Browsing by Issue Date
Now showing items 1-20 of 1114
-
(2024)Climate change has caused a vital need to identify the coastal ecosystems with high carbon sequestration capacity, i.e. Blue Carbon ecosystems. The ability of these ecosystems to sequester carbon is strongly influenced by the physical environment. However, previous research on Blue Carbon potential of coastal macrophyte ecosystems has mainly focused on single seagrass species whereas research on multispecies meadows along environmental gradients, such as wave exposure has been scarce. Nonetheless, exposure and depth are known to shape the functional structure of macrophyte communities. The aim of this study was to investigate if exposure and depth affect the functional structure and biomass-bound carbon stocks of macrophyte communities along an exposure gradient in an archipelago area in the western Gulf of Finland, northern Baltic Sea. Macrophyte samples were collected at two different depths (1-2 m and 3-4 m) from 20 soft-bottom sites with different exposure levels. At each site, the functional community structure was quantified by measuring four functional traits (maximum height, root depth, root-to-shoot ratio, specific leaf area), associated with the variation in plant life history strategies and in addition, the plant biomass-bound carbon was determined. The results showed that when moving from the outer to the inner archipelago, the species composition shifted from marine to limnic species, and the community functional structure was shaped by environmental conditions (i.e. wave exposure, light availability, salinity) and depended on the depth. The plant carbon stocks did not differ significantly along the exposure gradient in the shallow areas, while at increasing depth, exposed sites had the highest plant carbon stocks, which can be likely explained with the environmental factors such as light availability. To conclude, these results highlight the need for further research that investigates the connection between environmental drivers, functional traits, and plant carbon stocks to assess the Blue Carbon potential of multispecies macrophyte communities in heterogenous environments.
-
(2024)Lichens are symbioses between fungi, photosynthetic algae and other organisms. The fact that several different fungi may occur in the same lichen thallus adds a further dimension to the diversity of these miniature ecosystems. Calicioids are a polyphyletic group of predominantly lichenised fungi which includes many species with stalked ascomata, topped with a persistent spore mass (mazaedium). One such species is Chaenotheca chrysocephala, a relatively common crustose lichen with a wide distribution. The lichenicolous fungus Chaenothecopsis consociata grows on the thallus of C. chrysocephala and is generally considered to be a parasite. This study aims to map the temporal and geographical distribution of C. chrysocephala and C. consociata in Europe in order to find out whether the parasite was present there before the year 1942, when the species was described, and to identify possible patterns which may affect the population dynamics of these two species. This study found that C. consociata was indeed present in Europe before 1942, at least in Norway, Sweden and Finland. Additionally, the percentage of infected C. chrysocephala thalli seems to have increased in Europe since the parasite was first found. The GBIF dataset showed a significant increase in infected C. chrysocephala thalli in northern Europe (N-EU) compared to central-southern Europe (CS-EU). Although the exact reason is unclear, this increase may be related to differences in forest structure across Europe. Firstly, the host lichen seems to prefer Picea and Pinus as its substrate, these being typical trees of needleleaf forests in Europe. Furthermore, the decrease of old-growth forest stands in Sweden and Finland may have reduced suitable habitat for the host, while the concurrent increase of disturbed stands may have favoured the dispersal of the parasite.
-
(2024)Itämeri ja Suomenlahti ovat voimakkaan ihmisvaikutuksen alaisena, mikä on aiheuttanut suuria muutoksia monissa kalapopulaatioissa. Tästä huolimatta tieto rantavyöhykkeen kalaston tilasta näissä olosuhteissa on vähäistä ja paikoittaista: tietoa niiden pitkän ajan kehityksestä 2000-luvun Itämeressä ei ole. Tutkin touko-syyskuussa 2023 rantavyöhykkeen kalastoa poikasnuottaamalla Hangon Tvärminnessä, läntisellä Suomenlahdella. Selvitin kalojen runsauden alueella laskemalla sekä kalojen määrän pyyntiponnistusta kohti että kalaston yksilötiheyden. Kartoitin kalaston lajikoostumuksen laskemalla lajien suhteelliset runsaudet, sekä laskemalla ajallisia ja alueellisia diversiteetti-indeksejä. Vuodenaikaisvaihtelua selvitin vertailemalla kuukausittaisia saaliita, sekä arvioimalla poikasten määrän ajallista vaihtelua. Vertailemalla tuloksiani tietoihin vuodelta 1992 tutkin kalastossa tapahtuneita pitkän ajan muutoksia. Kalojen runsaus romahti yli 90 % vuodesta 1992 vuoteen 2023. Yksilömäärän lasku koski lähes kaikkia lajeja, ollen rajoittumatta sellaisiin, jotka suosivat tiettyjä ympäristön olosuhteita. Vuoden 2023 saaliissa oli kolme uutta lajia, kun taas kymmentä vuonna 1992 esiintynyttä taksonia ei havaittu. Runsaimmat lajit 2023 olivat kolmipiikki (Gasterosteus aculeatus L., 1758), salakka (Alburnus alburnus L., 1758), liejutokko (Pomatoschistus microps Krøyer, 1838) ja hietatokko (Pomatoschistus minutus Pallas, 1770), jotka muodostivat yli 90 % saaliista. Silakka (Clupea harengus membras L., 1761), kilohaili (Sprattus sprattus L., 1758) ja ahven (Perca fluviatilis L., 1758) olivat erittäin runsaita 1992 mutta erittäin harvassa 2023, kun salakan määrä taas kasvoi yli kaksikymmenkertaisesti. Poikasten ilmaantuminen runsaissa määrin tapahtui kuukautta myöhemmin vuonna 2023, todennäköisesti johtuen kylmemmistä alkukesän lämpötiloista. Kalamäärän romahdus on todennäköisesti seurausta sekä vuosittaisesta poikasmäärän vaihtelusta että kalojen vähenemisestä pitkällä aikavälillä. Silakan, kilohailin ja ahvenen vähäiset määrät johtuvat todennäköisesti poikasmäärän vuosittaisvaihtelusta, joskin tämän varmistaminen vaatii vuosittaisia mittauksia. Salakan määrän runsas kasvu viittaa rehevöitymisen ja vesien lämpenemisen vaikutukseen. Tulokseni korostavat tähän mennessä huonosti tunnettujen pitkän ajan muutosten laajuutta Itämeren rantavyöhykkeen kalastossa.
-
(2024)Prostate cancer is one of the most common cancers diagnosed in men. Somatic copy number alterations (SCNA), such as the deletion of PTEN or NKX3.1 and the amplification of MYC, have been associated with prostate cancer progression and could serve as potential biomarkers during diagnosis. One approach to utilize this information would involve screening a large number of prostate tissue sections for SCNAs and subsequently validating the findings using a secondary method. This process could enable more personalized treatment options for cancer patients. This thesis aimed to create a robust and reproducible workflow for SCNA identification. This was achieved by optimizing a chromogenic immunohistochemistry (IHC) protocol using immunostaining chambers and open-source 3D-printed laboratory hardware. The optimized protocol was then transferred to an automated liquid handling robot, and a panel of three antibodies for PTEN, NKX3.1, and MYC was developed for SCNA screening with IHC. Additionally, a chromogenic in situ hybridization (CISH) protocol was optimized to validate the results of the IHC. The immunostaining chambers required a lower antibody dilution to perform comparably to the manual IHC stainings. The automated protocol using the liquid handling robot produced high-quality stains with optimized dilutions. The optimized CISH protocol successfully identified the presence of the target gene, but unclear signals and merging of the signals obstructed detailed analysis. While complete deletion of PTEN was detectable, determining the number of gene copies per cell proved challenging due to signal variability and sample-dependent problems. Further optimization of the CISH protocol or development of an automated analysis workflow tailored to address these challenges is needed for more accurate analysis.
-
(2024)Social media influencers are called the opinion leaders of our time, as they have a lot of power over what peo- ple think and consume. Various sustainability actors expect that influencers take a strong role in the transfor- mation towards sustainability. In my thesis I examine, how do the reactions of the influencers’ followers and the perceived sense of responsibility and power of the influencer affect the way influencers share content on sustainability. In my research I also consider how different influencers receive differing responses to content related to sustainability. My analysis consists of interviews with six Finnish social media influencers. I conducted 5 semi-structured in- terviews, and received one written answer to the interview questions. I used thematic analysis as the analysis method in my research. The themes that arose from the interview data and from previous research are relation- ality between the influencer and their followers, connection between followers’ reactions and influencers’ sus- tainability content and the perceived sense of power and responsibility of the influencer. Three influencer profiles were created based on the interview data. The profiles describe different types of in- fluencers with different, specific audiences. The profiles demonstrate how different audiences respond to con- tent related to sustainability in different ways, how different influencers share sustainability content in different ways, and how influencers perceive their responsibility in different ways. My research shows that both the reac- tions of the followers and the perceived sense of responsibility of the influencer affect how an influencer shares content on sustainability. According to my research, the influencer's perceived power does not affect content shared on sustainability. This study contributes to the understanding of the issues that affect influencers’ behavior in sharing sustainabil- ity-related content. With this knowledge, it is possible to move closer to understanding whether influencers can be part of the change towards a more sustainable future. shared on sustainability. This study contributes to the understanding of the issues that affect influencers’ behavior in sharing sustainabil- ity-related content. With this knowledge, it is possible to move closer to understanding whether influencers can be part of the change towards a more sustainable future.
-
(2024)Schizophrenia, a mental disorder affecting over 1% of the world’s population, has a 41-65% chance of being acquired in monozygotic twins, and shows a complex heritable pattern. Research has shown the involvement of various neuronal and glial cell types in the disorder’s progression. Recent studies are focusing on cortical interneurons, as clinical features of schizophrenia such as working memory deficits emerge due to the abnormal activity of these cells . The advent of induced pluripotent stem cell (iPSC) technology has made it easier to study schizophrenia disease mechanisms, with studies revealing differences in morphological and physiological properties of cortical interneurons in patients with schizophrenia. In this thesis , the aim was to optimize iPSC-interneuron differentiation protocol and live-cell imaging method suitable for disease modelling. Interneurons were differentiated from iPSCs with overexpression of inducible transcription factor, Achaete-scute homolog 1 (ASCL1). The iPSCs were derived from twin pairs discordant for schizophrenia and from healthy controls. Expression of interneuron-specific markers was verified using RT-qPCR and validated at the protein level by an immunocytochemistry (ICC) assay in the control cell lines first. Additionally, to estimate the formation of neurites and differences in neurite length and branching, the differentiated interneurons from the controls were subjected to live-cell imaging by IncuCyte S3 live-cell imaging system. Imaging parameters such as cell body cluster filter was optimized to visualize the neurites. To study interneuron involvement in schizophrenia, iPSCs from one twin pair discordant for schizophrenia were successfully differentiated. Interneurons strongly expressed Gamma-aminobutyric acid (GABA) neurotransmitter related neuronal markers: glutamate decarboxylase 67 (GAD67) and GABA at protein level. The neurons were identified as somatostatin (SST) subtype GABAergic neurons by their mRNA and protein expression. While it was possible to observe differences in gene expression, there were no clear differences in the morphology of the differentiated cells as well as the localization of markers in comparison to the healthy controls. Further studies should focus on having a protracted time for differentiation where more mature interneurons can be produced by establishing co-cultures with excitatory neurons. This will help replicate the in vivo cortical machinery which in turn will aid in better understanding of disease mechanisms.
-
(2024)Vaatetusala on tärkeä hyvinvointia tuottava teollisuudenala. Se on myös hyvin kuormittava ympäristölle. Kiihtyvä kulutus ja vaaralliset työolot ovat osa alan haastetta. Kiertotaloudesta on kaavailtu näihin ongelmiin ratkaisua. Sen tavoitteena on korvata vaatteiden lineaarinen tuotantomalli luonnon kiertokulkuun perustuvalla mallilla sekä mahdollistaa talouskasvun ja luonnonvarojen kulutuksen irtikytkentä lisäämällä samalla hyvinvointia. Kiertotalousprojektia leimaavat heikkoa kestävyyttä peilaavat teknis-taloudelliset ratkaisut eivät yksinään mahdollista riittävää muutosta vaan kulutuskulttuurin haastaminen on välttämätöntä. Tässä tutkielmassa on selvitetty käytäntöteorian keinoin, millaisia kiertotalouteen liittyviä käytäntöjä suomalaisissa pienissä vastuullisissa vaatetusalan yrityksissä toteutetaan. Aineistosta havaittiin kahdeksan eri käytäntöä, jotka liittyivät liiketoiminnan ja tuotannon eri osiin sekä erilaisiin kiertotalouspalveluihin. Kertotalous näyttäytyi vaatetusalalla yritysten näkökulmasta sekä inspiroivana mahdollisuutena että vakavana uhkana yritystoiminnalle. Talouskasvun ja kulutuksen irtikytkennän dilemma oli osoittautunut haastavaksi ratkaista, etenkin innovatiivisen liiketoimintaosaamisen ollessa toistaiseksi yrityksissä puutteellista. Tutkimuskirjallisuuden havaintoja mukaillen kiertotalousliiketoiminta on hyvin haastavaa ja edellyttää vaatetusalalla vallitsevien normien kyseenalaistamista, joka on pienille yrityksille lähes mahdotonta yksin. Muutos voisi mahdollistua, mikäli kuluttajat nousisivat yritysten aktiivisiksi kanssatoimijoiksi, julkisen sektorin tukiessa toimintaa. Toistaiseksi vaatetusala kuitenkin noudattaa perinteistä, lineaarista tuotantomallia ja kiertotalousprojekti sekä sen tavoittelema laajamittainen yhteiskunnallinen muutos on jäämässä utopistiseksi visioksi.
-
(2024)Alzheimer's disease (AD) is a degenerative brain disorder that exhibits deterioration as one gets older. Although much remains to be learned about the pathophysiology of AD, there is strong evidence links amyloid beta (Aβ) plaques, which are responsible for cognitive impairment, to GABAergic interneurons. Model systems are of prime importance for adequately studying the pathophysiology of this disorder; however, existing in vitro models have limitations in producing patient-specific cells. The development of induced pluripotent stem cell (iPSC) technology has provided a novel opportunity for the effective production of disease-relevant cell types while preserving the molecular traits of the patient. In this thesis, the differentiation protocol established by Nicholas et al. (2013) was used to promote the development of interneurons derived from iPSCs. To enhance the efficiency of differentiation, the protocol was modified with the use of small molecules combined in different ways. The end result of the differentiation was characterized using immunocytochemistry (ICC) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The combination of molecules that produced greater efficiency in differentiation was selected, and the optimized protocol was carried out with iPSCs derived from an AD patient harbouring the APP Swedish mutation. The differentiation of cortical interneurons, demonstrated by the expression of pan-neuronal and specific GABAergic neuronal markers, signifies the successful generation of differentiated interneurons in the context of AD. AD iPSCs upregulated several markers related to AD pathology, such as APP and BACE1. However, the cell lines tolerated the small molecules differently, and thus, the protocol needs more optimization in the future. In summary, iPSC-based differentiation protocols are capable of producing disease-specific cell types that would be helpful in developing accurate AD models for revealing the mechanisms of Aβ pathology.
-
(2024)Peatlands are a significant carbon and nitrogen reservoirs, making them potential sources of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emissions. Variations in water table level change the oxygen content of peat, affecting the oxidation-reduction or redox state of the peat, which is known to influence the biochemical processes and thus greenhouse gas (GHG) emissions. The aim of this study was to assess the effect of controlled anoxic redox conditions and inorganic electron acceptors (TEAs) on redox potential (Eh), and N2O, CH4, and CO2 emissions. In this study during an anaerobic incubation experiment, the rates of formation of these GHGs and Eh values as a function of time were measured from drained (D) and undrained (UD) peat of three nutrient levels: mesotrophic (ME), oligotrophic (OL), and ombrotrophic (OM). Redox conditions were controlled to three levels by nitrate (NO3-), ferric iron (Fe3+), and sulphate (SO42-). In addition, measurements were performed on untreated (Ctrl) peat. The peat was in an anoxic state throughout the incubation (Eh < 300 mV) and the values were in the order of TEA reduction, even though they were mainly in the iron and manganese reduction zones, probably due to the naturally high iron content of the peat. As expected, N2O formation was highest in flasks with added NO3-, and N2O formation was weak and ceased without addition. CH4 formation was reduced in flasks with added NO3- or SO42-, and SO42- addition also inhibited CO2 formation on which NO3- addition had no effect. In contrast, the addition of Fe3+ increased both CO2 and CH4 formation compared to Ctrl treatment, and it is possible that methanogens were involved in the reduction of Fe3+. In Ctrl flask, the redox state did not decrease to the lowest level compared to the other treatments as expected, but the Ctrl treated UD ME peat had the highest CH4 formation at the end of incubation. For all treatments, GHG emissions were higher from nutrient-rich peat in the descending order ME > OL > OM. In general, UD peat also had higher gas formation than D peat. All GHGs were formed the most while Eh values were around 0 mV and the value was especially high for CH4 formation, probably due to the linkage between methanogens and iron. The poor ability of the Pt electrode to detect NO3- or oxygen was the most likely reason for the variable and low Eh values of the flasks with NO3- addition. For the same reason, oxygen leakage of the anaerobic chamber was most likely responsible for the varying Eh values measured from Ctrl treated OM peat. This study suggests that Eh measurement is a useful predictor of the redox state and reactions, but it must be considered together with other measurements and analyses such as microbial analysis, nutrient analysis, and GHG measurements to predict redox processes and GHG emissions in anaerobic peatland. In particular, the role of iron on CH4 emissions requires further research.
-
(2024)The many symbiotic microbes associated with plants can represent the first line of defence against viral pathogens, which can have profound impacts on plant health and productivity. Unfortunately, although countless studies have investigated variations in the composition of microbial communities associated with crops, showing benefits in the plants’ nutrient acquisition, stress tolerance or growth promotion, much less is known about how viruses might affect the composition of the microbiota associated with plants, and especially non-crop plants. Furthermore, we also often lack an understanding of how plant viruses are transmitted across their environment. Addressing these knowledge gaps is bringing us closer to better describe and manage the complex relationships between plant microbiota and viral pathogens in their natural environment. The main objective of my Master’s study is to examine variations in the bacterial community associated with a plant in the agricultural landscape, and to identify potential players in microbial community changes. With this in mind, I chose to work with the ribwort plantain, Plantago lanceolata, because it has a widespread distribution, it is present around cultivars, and there is extensive knowledge of its biology and genetics. Thus, P. lanceolata, represents an excellent system for investigating the causes of variation in the plant-associated microbiota. More precisely, I worked with the P. lanceolata population evolving in the Åland Islands, in Southwestern Finland, which has been the target of long-term ecological and evolutionary metapopulation studies. The population is also known for co-evolving with several viral pathogens, and with diverse Hemiptera insects (plant sucking-insects) that have been suggested as possible vectors of the viruses between plants. I collected P. lanceolata leaves, and insects found on P. lanceolata specimens from 28 habitat patches, or meadows, from five localities across the Åland Islands (Geta, Sund, Lemland, Finström, Eckerö). I extracted DNA from a total of 10 leaves per patch, as well as 60 Hemiptera specimens (of several uncharacterized species). I screened for viral infection in all samples by amplifying the viral loci for reverse transcriptase form Plantago latent caulimovirus (cauV) and the replication associated protein gene from Plantago lanceolata latent virus (PlLV). In parallel, I characterized the bacterial communities associated with each plant and insect through metabarcoding of the highly variable V5-V6 region of the 16S rRNA bacterial gene. My MSc's project shows that bacterial species richness (alpha-diversity metric) and community composition (beta-diversity metric) vary between plant and insects. But that they do not vary between the virus-infected and uninfected plants tested, and neither between geographical locations within the Åland Islands. This is the first study investigating the effects of two virus infections on the microbiota of a common weed from the Åland Islands. It provides preliminary data for the study of how the bacterial microbiota of P. lanceolata might respond to virus infections, and how viruses might be transmitted between individual plants.
-
(2024)Educational technology is advancing rapidly, with VR (virtual reality) emerging as a promising branch of XR (extended reality) technology for educational purposes. Utilizing head-mounted displays (HMD), immersive VR experiences immerse users in a virtual environment, limiting their awareness of the physical world. VR proves valuable in education by complementing traditional teaching methods, offering experiences impossible in the physical realm. Studies indicate enhanced affective factors, understanding, motivation, and memorization among students. In biology education, VR serves as a visual aid, helping students grasp complex biological concepts difficult to visualize from a two-dimensional textbook. It also shows potential in supplementing hands-on activities like laboratory work and anatomical dissections, experiences outside classrooms, and sustainability education. However, challenges persist in VR's educational application, including uncertainty about learning outcomes, health concerns, high costs, and a general lack of expertise in VR design and pedagogical implementation. Educational VR design has thus far lacked a foundation in pedagogy and learning theories. This thesis aims to address this gap by reflecting on the development of a pedagogically meaningful VR experience within sustainability education. Collaborating with the Global Campus project of the University of Helsinki, the thesis introduces a VR experience integrated into the immersive virtual sustainability learning experience, Serendip. The design process involved literature research, user and expert interviews, and consideration of learning theories such as constructivist learning, experiential learning, flow theory, gamification, CTML, SDL, and CLT. Specific aspects of VR design, like immersion levels and prior knowledge of users, were also considered. The thesis's significance lies in pioneering pedagogy-based design for educational VR, particularly addressing complex, abstract, and multidisciplinary subjects. It emphasizes the need for collaboration among pedagogy, content, and VR animation experts in future educational VR design. This work serves as a potential template and inspiration for further research in the field, aiming to refine the integration of pedagogical principles into VR experiences for education.
-
(2024)The planetary health approach emphasizes the interconnectedness between human health and natural systems. Urban planners also have the opportunity to promote planetary health through their work by reducing the negative environmental impacts of planning solutions and by increasing decisions that support residents' health and wellbeing. Numerous studies have shown that nature promotes human physical, mental, and social health, underscoring the importance of accessible nearby nature, especially in growing cities. This thesis examines urban planning in the city of Lahti from the perspective of planetary health. The study aims to investigate how nearby nature and its health and wellbeing effects, particularly for children and young people, have been considered and identified in land use planning. Additionally, the goal is to determine how conflicting land use interests are prioritized in decision-making. The research material consists of interviews with officials from the Lahti Urban Environment service area, and the data is analyzed with qualitative content analysis and thematization. The results indicate that nearby nature is perceived as an important part of Lahti's urban structure. Urban greenspaces and nearby nature areas are most concretely taken into account by zoning them as green areas in general and detailed plans. Furthermore, urban planning utilizes surveys of nearby nature conducted in early childhood education institutions and schools to ensure accessibility of nearby nature for children and adolescents. The appreciation of Lahti's planners, nature-friendly organizational culture, functional planning practices, and the recognition of the city's environmental efforts support the preservation of nearby nature areas in the urban structure. However, green areas without zoning are constantly at risk of being allocated for other land use purposes in a growing city. Planners describe their work as a continual search for compromises between conflicting desires, goals, and land use interests. They hold a central position of power and responsibility in making sustainable planning decisions, which can also be guided by planners' own values, attitudes, and expertise. Systems thinking required by planetary health approach along with research findings on the health and wellbeing effects of nearby nature, should be more effectively integrated into urban planning, political decision-making, and public discourse. Although this study focuses on planners in one city, it offers interesting insights into effective urban planning practices and current challenges within the framework of planetary health.
-
(2024)The demand for CO2-free electricity will grow in the future, which is expected to lead to an increase in onshore wind power capacity. Like all energy forms, wind power can have negative impacts on the environment, which can pose different risks for wind power companies. Several companies that have wind power in their portfolio have recently committed to biodiversity targets, typically aiming for no net loss or net positive impact on biodiversity. These targets are expected to be a possible avenue for competitive advantage, however, there is a research gap on whether biodiversity considerations can bring competitive advantage to companies. In my research, executed as a paid assignment for Fortum Renewables Oy, I examine wind power investors’ perceptions of biodiversity targets and whether they perceive that the targets can bring competitive advantage to wind power companies. In this thesis, I aim to provide answers to three primary research questions: 1) How do investors manage their investments’ biodiversity impacts? 2) Can setting biodiversity targets bring competitive advantage to wind power companies? and 3) What kind of biodiversity targets do investors value? For this research I interviewed investors known to invest in onshore wind power in Finland. I conducted seven interviews with eight informants, including both finance and sustainability professionals, representing seven different investors. I analysed the interview data using inductive thematic analysis provided by Braun and Clarke (2006). My research found that investors identify several possibilities for both risk mitigation and competitive advantage, which can be achieved through good biodiversity management. Thus, investors see value in biodiversity considerations, such as biodiversity targets. Simultaneously, investors recognised several issues regarding these targets, which hinder achieving competitive advantage through them. The findings of my research may prove useful both for companies that have or aim to set biodiversity targets and investors wanting to manage their investments’ biodiversity impacts.
-
(2024)The taxonomy of the green macroalgal genus Monostroma is poorly known in the Baltic Sea region and worldwide.Two species of Monostroma are currently reported from the Baltic Sea: the cosmopolitan spring species Monostroma grevillei and a proposed endemic, free-floating summer species Monostroma balticum. However, previous work has highlighted the unclear taxonomic status of M. balticum, and some consider it a growth form of the cosmopolitan species M. grevillei or a monostromatic growth form of Ulva spp. No molecular data exists of M. balticum, and the morphological characteristics distinguishing this species from M. grevillei and similar species are unclear in the literature. The aim of this thesis is to explore the taxonomic status of M. balticum by firstly systematically reviewing the historical and contemporary literature, including the original description, to illuminate the current morphological circumscription of M. balticum and related species. Secondly, using DNA barcoding based on the tufA -marker, fresh collections of foliose monostromatic green algae from the Baltic Sea region are identified molecularly and put into an evolutionary context using phylogenetics. Thirdly, novel plastid genomes are produced from monostromatic green algae to explore the genomic features of these algae and to see if they aid in species delimitation or phylogenetic approaches. Based on the literature review, the morphological and ecological features used in specimen identification currently (micromorphology, free-floatingness and occurrence in summer) may not be enough for accurate identification, and especially the micromorphological features are quite vaguely described in contemporary literature making their use difficult in practise. All monostromatic specimens collected are identified using DNA barcoding as either M. grevillei, Kornmannia leptoderma or Ulva intestinalis, and those specimens mostly resembling the original description of M. balticum are recovered as U. intestinalis. Plastid genomes were produced from M. grevillei, K. leptoderma and U. intestinalis, from the latter species separate genomes were generated from a typical tubular-morphology specimen as well as a “M. balticum”-morphology specimen. M. grevillei and K. leptoderma plastids were unusual in being large, inflated by many introns and intrageneric regions and having many rearrangements. Produced U. intestinalis plastomes are similar and resemble previously published Ulva genomes. The accurate identification of M. balticum -like specimens is discussed, and for future work DNA barcoding is suggested to be the main tool for specimen identification. This thesis provides evidence towards a previous hypothesis that M. balticum is not a distinct species but a specific growth from of U. intestinalis. Investigating historical herbarium specimens, including original material, using molecular methods is proposed to verify if M. balticum should be synonymised formally with U. intestinalis. The potential drivers of the shift in growth form of U. intestinalis are discussed. Finally, the plastid genome landscape in these foliose green algae is discussed.
-
Identifying the disease-causing variant in a large family with a late-onset dominant distal myopathy (2024)Distal myopathies are a group of rare progressive genetic muscle disorders that are extremely varied both genetically and clinically. Typical symptoms include weakness and atrophy limited to the skeletal muscles of distal extremities in hands and legs. The age of onset ranges from early childhood to late adulthood depending on the disease. Currently around 30 genes have been associated with distal myopathies, most of them causing a dominant disease. The objective of the thesis was to identify the disease-causing variant in a family affected by autosomal dominant distal myopathy with early adulthood onset. Affected family members expressed weakness and atrophy in muscles of both hands and legs. To narrow down the chromosomal location of the disease-causing variant, linkage analysis was conducted with genome-wide single nucleotide polymorphism data of family members. Because of the progressive nature of the disease and uncertain disease status of one family member, linkage analysis had to be repeated a few different times with different settings. Both disease statuses and pedigree size were altered to account for the possibility of presymptomatic carriers or incomplete penetrance. Analyses with different parameters led to discovery of multiple possible co-segregating regions. Rare co-segregating small-scale and structural variants as well as repeat expansions in these regions were examined from next-generation sequencing data with multiple bioinformatic detection tools. The segregation of possible candidate variants was validated with Sanger sequencing and PCR. Ultimately, no likely rare co-segregating variant of any type of genetic variation with a likelihood to cause a disease such as distal myopathy was identified by any detection method used. Lack of potential disease-causing variant could be due to incomplete penetrance of the variant or if it was in non-coding regions, such as a deep intronic splicing variant in a gene currently not known to be connected to muscles.
-
(2024)Background: The infant gut microbiome undergoes major temporal changes in the first year of life, crucial for supporting normal development and long-term health. The immense diversity of fiber structures in breast milk and later in solid foods pose unique selection pressures on the gut microbiome maturation by providing novel substrates for the microbiota. However, the longitudinal impact of complementary food-derived fibers on the taxonomic and functional maturation of the gut microbiome during the gradual transition from breast milk to solid foods is not well understood. Objectives: My objective was to examine how breast milk, its fiber and complementary food fibers in the broader context of overall infant diet may affect the gut microbiome bacterial species composition and support age-appropriate gut bacterial maturation trajectories during first year of life. Methods: Longitudinal and cross-sectional development of 68 infant gut microbiomes and 33 metabolomes were examined with linear mixed models to determine the impact of infant nutrition on gut microbiome taxa and functional development. Nutrition assessments were based on detailed quantitative weighted 3-day food records (months 3,6,9,12) and the intakes of total dietary fiber with its food sources and fiber fractions relied on current internationally approved CODEX-compliant values. Questionnaires were utilized to monitor when various complementary foods were introduced, enabling more comprehensive nutritional analyses. Bacterial species identification was based on MetaPhlAn2 quantification of bacterial species from metagenomic data and metabolomic profiles were generated using four liquid chromatography-mass spectrometry (LC-MS) methods. Results: My examinations place the previously described sequential trajectories in infant gut microbiome maturation into detailed fiber-dependent nutritional context relying on metagenomic species identification. I discovered 176 complementary food derived fiber-bacterial species associations. The majority of the associations (147, 84%) were positive whereas breastfeeding and related variables tended to be inversely associated with the same species, showing strongest inverse correlations to later trajectory species indicative of slower maturation. Both bacterial species and metabolomic profiles displayed pronounced longitudinal shifts in response to solid food fibers. Each introduction of novel dietary source of fiber associated to diversification of the microbiome revealing fiber-species specific temporal patterns. Conclusions: The longitudinal analyses highlight that sufficient fiber intake from appropriate sources during the weaning period likely function to build capacity for the species permanence in the more diverse and stable mature gut microbiome composition and function reached in later childhood.
-
(2024)Nuclei isolation is a method used e.g. as a part of chromatin structure research. DNA structure can be examined in its 3D form from isolated nuclei because DNA is still wrapped around the histone proteins. Examining the chromatin structure can offer information e.g. about gene expression and how it is regulated. Isolating nuclei from plant cells demand more optimization compared to animal cells because of the cell wall, chloroplasts and secondary metabolites. The presence of organellar DNA can hamper the later DNA analysis. Secondary metabolites can hinder the actual isolation process. Finding the suitable isolation protocol for species of interest may need careful optimization of different aspects. Different species can differ from each other based on the structural and biochemical characteristics and because of this the same protocol may not ensure as good results for them. Different tissue types of the same species may have also differences in their biochemical and structural characteristics. In this thesis work, three different isolation protocols were used for three plant species; Pinus sylvestris, Betula pendula and Arabidopsis thaliana. The purpose of the work was to compare the results from each nuclei isolation protocol. Optimization of isolation protocol for P. sylvestris and B. pendula would help the isolation process for later research. Thesis work was done to get guidance for this optimization. Samples handled with different protocols were different from each other based on the sample concentration (particles/mL) and the average size of isolated particles. Chloroplast contamination was tested with chloroplast specific primers with PCR. None of the samples were free from chloroplasts.
-
(2024)Background and objectives: Since early adolescence, the bedtimes and wake-up times begin to delay gradually until the early adulthood. This so-called shift to eveningness reaches its maximum at around the age of 20, and it usually occurs earlier in girls than boys. Eveningness has been previously associated with depression, anxiety, sleep problems, somatic symptoms, and other health-related issues in adolescents and adults. The aim of this study is to examine the associations between adolescents’ chronotype and their physical and mental well-being. Methods: This study examined how the self-reported chronotype was associated with self-reported problems related to adolescents’ physical and mental well-being. The chronotypes were divided into 5 types: Definitive Morning-types, Moderate Morning-types, Intermediate-types, Moderate Evening-types, and Definitive Evening-types. The participants were 7th, 8th and 9th graders, and the sample consisted of 6522 students from 83 schools in Finland. Some of the data was gathered at three time points, some at two time points, and some at one time point during the academic year. The associations between chronotype and well-being variables were studied cross-sectionally and some of them also longitudinally. Results: The main findings were that eveningness was associated with difficulty concentrating in lessons, susceptibility to give up easily on difficult tasks, school burnout symptoms, feelings of nervousness and anxiety, excessive worrying, difficulty relaxing, irritability, restlessness, difficulty falling asleep, waking up at night, daytime tiredness, and low mood as compared to morningness. Eveningness was also associated with neck and shoulder pain, lower back pain, and headache, as well as pain in the head and lower back due to the use of digital devices. Eveningness was associated with decreased concentration in lessons and increased susceptibility to give up on difficult tasks across time. On the other hand, feeling lonely and not being accepted as part of the group were associated with morningness. Conclusions: In conclusion, the physical and mental health problems were emphasized among Evening-type adolescents, as compared to Morning-type adolescents. Since adolescents shift toward eveningness, the need for thorough management of sleep and circadian problems should be highlighted, in order to intervene and improve the mental and physical well-being of adolescents both at school and at home.
-
(2024)The RNA splicing process is an important part of gene expression in which the introns are removed from the pre-mRNA so that the mature mRNA only contains protein coding exons. The splicing process is executed by the spliceosome in two subsequent transesterification reactions that occur partly co-transcriptionally. In the first step an intron lariat is formed between the exons. This is followed by splicing of the intron lariat and ligating the exons together. Genetic variants that affect the splicing of a particular gene are called splicing variants and they may disrupt the normal splicing process. Splicing variants can be both exonic or intronic and have effects on splice site recognition, activate cryptic splice sites or create new splice sites. These changes can lead to for example exon skipping or intron retention in the transcript. Diagnosing splicing variants is challenging because of the unknown functional effects of the variants. Splicing prediction tools can help predict the possible effects of variants. Different sequencing methods enable the detection of aberrant splicing transcripts and thus may help in variant interpretation. The aim of this master’s thesis was to develop a detection method suitable for the diagnostic laboratory for RNA splicing variants in congenital disorders. The methods that were tested included RNA and Sanger sequencing. First, the patient selection was performed using splicing predictions and previous research on the variants. Secondly, after receiving patient samples, RNA was extracted, and its integrity measured. The laboratory work was then divided into two parts, the other leading to the RNA sequencing and the other to Sanger sequencing. Before Sanger sequencing primer design, RT-PCR, PCR and analysis of the PCR fragment sizes was performed. RNA sequencing was preceded by RNA library preparation. The studied variants in this thesis were BRCA2 c.476-3C>A, MSH2 c.2005+3A>T and CYLD c.2350+5G>A. The PCR fragment analysis and Sanger sequencing was able to detect an aberrant splicing transcript with exon skipping on two patients caused by a variant in the CYLD gene. The RNA sequencing results confirmed the aberrant splicing transcript. In addition, fragment analysis showed evidence of a possible splicing isoform with skipping of two exons caused by a variant in the BRCA2 gene that was not expressed enough to show on the Sanger sequencing results. The RNA sequencing detected a splicing transcript with exon skipping in two BRCA2 patients. However, this was not the same transcript as interpreted from the fragment analysis results and no results in the RNA sequencing indicated a transcript with skipping of two exons.
-
(2024)Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motoneurons (MN) within the central nervous system (CNS), leading to muscle atrophy and eventual paralysis. Cause of death is in most cases due to respiratory failures 3-5 years after diagnosis. ALS can occur idiopathically without any know causes or it can be associated with certain genetic mutations. One of these known factors is a point mutation in the superoxide dismutase 1 (SOD1) gene, particularly the G93A mutation is known to affect the functionality of SOD1. SOD1 is an enzyme that metabolizes reactive oxygen species (ROS) and the SOD1-G93A mutation limits this functionality and propagates endoplasmic reticulum (ER) stress signalling cascades. Mutated SOD1 cannot be broken down by the cell, and hence it is associated with activation of protein degradation (ERAD) system with a prolonged ER stress signalling, followed by apoptotic cellular response. Although SOD1-G93A mutation has been widely studied, the basic mechanisms of the disease are not fully understood. Mesencephalic astrocyte derived neurotrophic factor (MANF) is an evolutionary conserved protein with trophic properties. MANF has been researched as novel treatment in a range of neurodegenerative diseases, such a Parkinson’s. MANF has been shown to promote cell survival but has limitation as an administered drug treatment. In this study we used transgenic SOD1-G93A mouse model with male mice to study the effects of a novel MANF variant for ALS. Disease progression and histology were used to assess the treatment efficacy.
Now showing items 1-20 of 1114