Deskriptiivisessä vaativuusteoriassa tutkitaan laskennan vaativuuteen liittyviä kysymyksiä logiikan työkalujen avulla. Tällöin käsitellään tilannetta, jossa laskennan syötteenä toimivat äärelliset mallit. Tässä kehyksessä erinäisiä vaativuusluokkia voidaan karakterisoida etsimällä logiikoita, joilla on kyseistä vaativuusluokkaa vastaava ilmaisuvoima. Klassiset esimerkit tällaisista tuloksista ovat Faginin esittämä epädeterministisen polynomiaalisen ajan karakterisaatio logiikan Σ 1 1 avulla ja Immermanin, Livchakin ja Vardin esittämä deterministisen polynomiaalisen ajan karakterisaatio ensimmäisen kertaluvun inflatorisen kiintopistelogiikan avulla.
Tässä opinnäytetyössä tarkastellaan Gurevichin esittämää kysymystä polynomiaalisessa ajassa ratkeavien kielten luokan P vahvasta loogisesta karakterisaatiosta. Kyseinen kysymys on yksi äärellisen malliteorian haastavimpia ongelmia. Kysymyksen esittelyyn tarvittavan peruskoneiston läpikäynnin lisäksi tässä käsitellään myös sen yhteyksiä laskennan vaativuusteoriassa keskeiseen P-NP-ongelmaan.
Gurevichin kysymyksestä voidaan esittää myös rajoitetumpia versioita, mikäli käsitellään tilannetta, jossa laskennan syötteenä voi olla vain kiinnitetyn malliluokan K malleja. Tällöin luokan P karakterisointi helpottuu, ainakin jos luokka K on riittävän suppea. Tässä opinnäytetyössä käydään läpi Grohen esittämä tulos siitä, että mikäli luokaksi K valitaan 3-yhtenäisten tasoverkkojen luokka, niin ensimmäisen kertaluvun inflatorinen kiintopistelogiikka karakterisoi polynomiaalisessa ajassa laskettavat kielet.