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Abstract

The vast majority of the world's languages are low-resource, lacking the data
resources required in advanced natural language processing (NLP) based
on data-intensive deep learning. Furthermore, annotated training data can
be insu�cient in some domains even within resource-rich languages. Low-
resource NLP is crucial for both the inclusion of language communities in
the NLP sphere and the extension of applications over a wider range of
domains. The objective of this thesis is to contribute to this long-term goal
especially with regard to truly low-resource languages and domains.

We address truly low-resource NLP in the context of two tasks. First, we
consider the low-level task of cognate identi�cation, since cognates are useful
for the cross-lingual transfer of many lower-level tasks into new languages.
Second, we examine the high-level task of document planning, a fundamen-
tal task in data-to-text natural language generation (NLG), where many
domains are low-resource. Thus, domain-independent document planning
supports the transfer of NLG across domains. Following recent encouraging
results, we propose neural network models to these tasks, using transfer

learning methods in three low-resource scenarios.

We divide our high-level objective into three research tasks characterised
by di�erent resource conditions. In our �rst research task, we address cog-
nate identi�cation in endangered Sami languages of the Uralic family, given
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scarce labelled training data. We propose a Siamese convolutional neural
network (S-CNN) and a support vector machine (SVM), which we pre-train
on unrelated Indo-European data, lacking high-resource close relatives. We
�nd that S-CNN performs best at direct transfer to Sami, and adapts fast
when �ne-tuned on a small amount of Sami data. In our second research
task, we address a scenario with only unlabelled data to adapt S-CNN from
Indo-European to Uralic data. We propose both discriminative adversar-
ial networks and pre-trained symbol embeddings, �nding that adversarial
adaptation outperforms an unadapted model, while symbol embeddings are
bene�cial when languages have disparate orthographies.

In our third research task, we address document planning in data-to-text
generation of news, in a domain with no annotated training data whatso-
ever. We propose distant supervision, automatically constructing labelled
data from a news corpus, and train a neural model for sentence ordering,
a task related to document planning. We examine Siamese, positional, and
pointer networks, and �nd that a variant of S-CNN results in generation
with higher human-perceived quality than heuristic baselines.

The contributions of this thesis include addressing novel low-resource sce-
narios considering two NLP tasks, at which the potential of deep learning
has not been fully explored. We propose novel approaches to these tasks
using neural models in combination with transfer learning, and our ex-
periments indicate their performance in comparison with baselines. Finally,
although we acknowledge that rule-based methods and heuristics might still
be superior to deep learning in truly low-resource scenarios, our approaches
are more language- and domain-independent, supporting a wider coverage
of NLP across languages and domains.
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Chapter 1

Introduction

The vast majority of the world's over 7,000 languages are currently being left
behind from the increasingly impressive developments of natural language
processing (NLP) and computational linguistics [63]. While advanced high-
level applications are built for English and a handful of other languages
using data-intensive deep learning, the same cannot be done for most lan-
guages, as their data resources are insu�cient. Furthermore, similar data
scarcity can apply to certain domains and tasks even within a resource-rich
language [55]. NLP for such low-resource scenarios has been named as one
of the most important open problems in the �eld [122], and is crucial to
support the inclusion of language communities in the NLP sphere, and to
increase its coverage across di�erent domains and tasks.

The availability of language-, domain-, or task-speci�c data resources
varies greatly within the low-resource category. While some languages have
potential resources left unexploited despite a relatively large speaker popu-
lation [49], others are endangered with tiny (if any) resources [63], lacking
even the most basic NLP tools. Meanwhile, extremely low-resource domains
and tasks, with no suitable training data whatsoever, might arise especially
when data requirements are particularly great and annotation is expensive.
Apart from low-resource languages, this can be the case for certain high-
level applications even in high-resource languages [22]. We refer to this kind
of extreme scenarios as truly low-resource.

1.1 Motivation

In this thesis, we consider two di�erent NLP tasks in truly low-resource
scenarios. First, we address the low-level, linguistic task of identifying ety-
mologically related words, cognates, between truly low-resource languages.

1



2 1 Introduction

Cognate information can support the implementation and transfer of low-
level NLP tasks into new languages, which is of utmost importance in order
to eventually build high-level applications for a larger set of languages.
Cognate information has been found useful for low-level tasks including
the processing of non-standard orthographies [35], morphological analy-
sis [47, 51, 96], part-of-speech tagging [125], as well as word-level trans-
lation [53, 100]. Cognates are also useful for language-learning applica-
tions [10], and of course, they are essential for historical linguistics [89].

Second, we focus on the higher-level task of content selection and order-
ing, known as document planning, for natural language generation (NLG).
Document planning is a fundamental task in NLG [121], which in turn is a
core part of high-level NLP applications. Since this task has been relatively
little addressed in NLG research despite its di�culty [37], many domains
even within high-resource languages are truly low-resource with little anno-
tated data [57, 137]. The coverage of NLG across a wider range of domains,
and eventually languages, is encouraged by document planning solutions
that are more robust and domain-independent [48].

The potential of deep learning and neural networks has not been fully
explored in the context of our tasks, especially in truly low-resource sce-
narios. Indeed, the lower-resource an NLP scenario is, the more di�cult it
is to train data-intensive models. Therefore, statistical [e.g 95, 111], and
especially rule-based [e.g. 46, 149] approaches might result in better out-
comes in some cases. Nevertheless, along with some encouraging results
for both cognate identi�cation [67] and document planning [114], in this
thesis we are interested in applying deep-learning models to these tasks. In
contrast to rule-based methods, models learning patterns from data do not
require language- or domain-speci�c expertise, but are instead more scal-
able to other languages and domains. Although statistical methods have
similar bene�ts, neural networks tend to outperform them after a relatively
low threshold of data requirements is met [95, 111], or sometimes by reduc-
ing neural network complexity [34]. At the very least, even if deep learning
models are not viable in some extreme scenarios, they can still be valuable
in combination with more traditional methods [149, 152].

In the context of cognate identi�cation and document planning, we con-
sider three truly low-resource scenarios with di�erent resource conditions.
First, we address cognate identi�cation across endangered Uralic languages
with a tiny amount of labelled data for the task. Second, while addressing
the same task, we consider languages with only unlabelled data. Third, we
address document planning for data-to-text generation of statistical news,
a domain with no suitable training data for the task. As these scenarios
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involve little or no language- or domain-speci�c training data, we cannot
train neural networks with such data directly. Instead, our approach is to
leverage the limited available data together with related, auxiliary data.

Transfer learning refers to the pre-training of models on auxiliary data
from a source language or domain, and transferring them to a target lan-
guage or domain, using a range of techniques depending on the scenario.
This principle has been inspired by the human way of learning � if one
already knows English, it is hardly necessary (or even possible), to start
language learning completely from scratch when starting to learn French.
Recent research indicates that transfer learning achieves promising results
in truly low-resource scenarios [33, 87, 110]. Furthermore, neural networks
making use of transfer learning generally outperform supervised models that
do not [123].

1.2 Research Tasks

The purpose of this thesis is to expand the �eld of NLP to previously un-
addressed truly low-resource scenarios. We consider three kinds of novel
scenarios, each characterised by di�erent resource conditions with regard to
the involved tasks, languages, and domains. We address two NLP tasks,
cognate identi�cation and document planning, that have received relatively
little research attention overall in the past, and no previous work to our
knowledge does this for the same set of languages and domains. Further-
more, although neural networks are the dominant tool of choice in NLP
research, we �nd that for these tasks, their potential has not been fully ex-
plored. At the same time, recent research implies a high potential of transfer
learning in combination with neural networks. Hence, our objective is to
develop neural-network solutions for our tasks, using transfer learning to
adapt them to our low-resource scenarios. We divide this objective into the
following research tasks (RTs).

Research Task I:

Given scarce language-speci�c labelled data, identify cognates in truly low-

resource Sami languages.

In our �rst low-resource scenario, we address the task of cognate identi-
�cation between three truly low-resource Uralic languages, namely South,
North, and Skolt Sami. These represent our target language set, and our
data for these languages consists of small vocabularies and a small set of
veri�ed cognates between them. As this is alone insu�cient for supervised
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training, our aim is to extend this with auxiliary data from source languages,
in our case from the Indo-European language family.

Research Task II:

Given only unlabelled data, adapt a pre-trained cognate identi�cation model

to truly low-resource Uralic languages.

In our second low-resource scenario, we continue with cognate identi�ca-
tion between truly low-resource Uralic languages. However, we consider a
case where our language-speci�c data is completely unlabelled. Our aim is
to pre-train models on source languages, and to adapt them to our target
languages using unlabelled data only.

Research Task III:

Given only auxiliary data, develop a method for document planning in news

generation.

In our third low-resource scenario, we are concerned with the task of doc-
ument planning within a data-to-text news generation pipeline. Document
planning consists of content selection and document structuring, that is,
determining what information is presented in a generated output and in
which order. Although we consider the high-resource English language,
direct supervised training for the task is not possible, due to a lack of anno-
tated training data with aligned data�text samples. Our aim is to construct
training data from auxiliary data, an unannotated news text corpus from a
similar domain.

1.3 Contributions

Having presented the background of this thesis in Chapters 2�3, we devote
each of Chapters 4�6 to one research task (RT). In these three chapters, we
make the following contributions.

In Chapter 4, we address our �rst research task RT-I. To accomplish
this, we �rst propose two models, a support vector machine (SVM) and
a Siamese convolutional neural network (S-CNN). These learn a string
metric from data, which is suitable for predicting cognacy between words.
In contrast to most previous work that assumes the availability of high-
resource relatives, we consider transfer across highly unrelated language
families. We pre-train the models on Indo-European etymological data,
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and test them on Uralic languages from the Sami group. In comparison
with a string-metric baseline, we examine the models' ability to generalise
to Sami, and �nd that S-CNN outperforms SVM and the baseline, Finally,
we exploit transfer learning by �ne-tuning S-CNN on a small amount of
labelled Sami data, to quantify how well it can make use of such data to
adapt. We �nd its performance improves fast already with little �ne-tuning.

Chapter 4 is based on a published conference paper [132], and a work-
shop abstract describing the setup and initial results [133]. Both of these
papers were co-authored with supervisor Mark Granroth-Wilding, who pro-
vided feedback and suggestions in both the planning and writing of the
papers. In the early stages of this work, the author of this thesis also
collaborated with Mika Hämäläinen, presenting together at a conference
an abstract discussing cognate identi�cation in the context of Sami lan-
guages [134].

In Chapter 5, we are concerned with our second research task RT-II.
To accomplish this, we begin with the same neural model, S-CNN, as we
propose in Chapter 4. As then, we pre-train the model on Indo-European
etymological data, but now we assume that no labelled data for Uralic
languages is available whatsoever. Therefore, we propose two unsupervised
methods: one of domain adaptation, and another of cross-lingual adaptation.
The former is based on latent feature learning: using adversarial networks to
make S-CNN's latent representations of source and target data more similar
to each other. The latter uses pre-trained cross-lingual symbol embeddings,
creating a common representation space for source and target languages. To
evaluate the e�cacy of our proposed methods, we compare the performance
of adapted and unadapted models at identifying cognates between di�erent
truly low-resource Uralic languages. We �nd that adversarial adaptation
outperforms an unadapted model, and that pre-trained symbol embeddings
provide bene�ts in certain scenarios.

In Chapter 6, we address our third research task RT-III. To accom-
plish this, we propose distant supervision: we use auxiliary data, a news
text corpus, to create training data for the task of sentence ordering, our
source task related to our target task, document planning. We examine three
kinds of neural models for this source task: Siamese, positional, and pointer
networks. Due to its performance and relatively low computational com-
plexity, we choose to incorporate a Siamese convolutional network (a variant
of S-CNN mentioned above), in an existing news generation pipeline. We
conduct a human evaluation of generation outputs, and �nd that our neu-
ral approach produces outputs rated higher by evaluators than those of our
baselines.
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The work in Chapter 6 has been a collaboration with Leo Leppänen, the
developer of the news generation system [84] to which we apply our neural
approach. He contributed to the chapter by implementing the baseline
document planners in Section 6.4 and assisting with the design of the human
evaluation.

1.4 Thesis Outline

This thesis consists of seven chapters. From this introduction, we proceed to
present the background of this thesis in Chapters 2�3. First, in Chapter 2,
we lay out the theoretical background, focusing on neural networks, transfer
learning, and low-resource NLP. Then, in Chapter 3, we describe the speci�c
NLP tasks examined in this thesis, cognate identi�cation and document
planning, and provide brief literature reviews concerning these tasks.

Chapters 4�6 present our contributions, addressing our research tasks
RT-I, RT-II, and RT-III. In each chapter, we present the speci�c problem
setting, our proposed methods and experiments with them, summarising
the �ndings at the end of each chapter. Finally, in Chapter 7, we conclude
the thesis with a discussion of our �ndings.



Chapter 2

Background

In this chapter, we present the theoretical background of this thesis. First,
we explain the fundamentals of neural networks, and give a brief overview of
models most relevant to our work. We then proceed to describe a theoretical
framework of transfer learning, considering di�erent learning scenarios. In
the last section, we review approaches to low-resource NLP, particularly
with regard to truly low-resource scenarios.

2.1 Neural Networks in NLP

Neural networks are a family of machine learning models based on collec-
tions of connected computational units, neurons, inspired by the neural
networks found in biological brains. Through stacked layers of connected
neurons, neural networks facilitate the learning of complex representations
from simple ones, which is referred to as deep learning. During the last
decades, neural networks have become the most popular tool of choice in
NLP. This development has followed from the general success achieved with
neural network models, which has been a result of increasing computational
power and dataset sizes, allowing for the training of larger models with more
learning capacity. In the following subsections, we describe several kinds of
neural network models used especially in NLP and this thesis.

2.1.1 Basics

The fundamental example of a neural network is the feed-forward network, or
multi-layer perceptron (MLP), and it is the basis of most neural networks. It
can be regarded as a function approximation f̂ of some underlying function
f , mapping an input x to an output ŷ = f̂(x;θ). Given some training data

7
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Figure 2.1: An MLP network with one hidden layer. There are two neurons
in input and output layers, and three neurons in the hidden layer. The
weight matrices W1,W2 assign weights to each connection between layers.

as examples of input�output pairs, the goal is to learn the parameters θ
that approximate f as well as possible.

The MLP maps inputs to outputs using a sequence of layers: an input

layer, one or more hidden layers, and an output layer, each consisting of one
or more neurons. Figure 2.1 depicts a simple MLP network with one hid-
den layer. Information is fed forward in the network through intermediate
computations at each neuron in the hidden layer(s) and the output layer.
In this example, starting from an input vector x = [x1, x2], the hidden layer
vector h = [h1, h2, h3] is computed such that

h = g1(W1x+ b1)

where W1 ∈ R3×2 is a weight matrix between the input and hidden layers,
b1 is the layer's bias vector, and g1 its activation function. The weight
matrix contains the weights assigned to each connection between the input
and hidden layers' neurons, determining the importance of di�erent input
features, while the bias vector b1 = [b11, b12, b13] contains the constant
parameters of each hidden-layer neuron. The activation function g1 applies
a non-linearity to each neuron-wise sum wh + b. The �nal output of this
MLP is then

f̂(x; θ) = ŷ = g2(W2h+ b2)

where W2 ∈ R2×3 is the weight matrix between the hidden and output
layers, b2 is the output layer's bias vector, and g2 is the output layer's
activation function.

In general, an MLP with n layers is a chain of n functions f̂(x; θ) =
fn(fn−1(. . . f (1)(x))) where the function of layer i is f (i) = gi(Wihi−1 + bi).
The model's parameters θ consist of the weights Wi and biases bi, which
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are learned by minimising a loss L(ŷ,y), a function of the error between the
model's predictions and desired outputs. The objective is to minimise this
loss on unseen test data using a separate training dataset, usually assumed
to follow the same underlying data distribution. This minimisation is based
on computing the loss function's gradient ∇θL using the back-propagation
algorithm, and updating the model's parameters towards a direction that is
opposite to the one indicated by the gradient, a technique known as gradient
descent [43].

Activation Functions

A non-linear activation function is essential for enabling the learning of
complex functions by the network, since without one, it reduces to linear
regression. In this thesis, we use the following four activations in our models:
the recti�ed linear unit (ReLU), sigmoid (σ), hyperbolic tangent (tanh), and
softmax, de�ned as

ReLU(x) = max{0, x}

σ(x) =
1

1 + e−x
∈ [0, 1]

tanh(x) = 2σ(2x)− 1 ∈ [−1, 1]

softmax(x) =
exi∑
j e

xj
∈ [0, 1]|x|

of which we use ReLU in hidden layers as it is easy to optimise, and the
others in the output layers of our models. In this thesis, we use the sigmoid
for binary classi�cation in both cognate identi�cation and sentence ordering,
as its output can be regarded as the probability that an input belongs to
the positive class, which can be converted to a discrete prediction using a
certain probability threshold. In Chapter 6, we use the hyperbolic tangent
in our recurrent models, as is common due to its slower tendency to zero
in longer sequences. We use the softmax in the same chapter for multi-
class classi�cation in the positional and pointer networks, as the function
essentially provides a probability distribution over several classes, where the
predicted class is considered the one with the highest probability.

Word Embeddings

In NLP, an important use of basic MLP networks is in training word em-

beddings, dense representations of words in a common vector space, where
words with similar meanings are close to each other [97, 107]. That is, a
word (string) w in some vocabulary V is mapped to a vector x, providing
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a numerical input to a neural network. One of the most popular methods
to compute word embeddings is word2vec, based on shallow MLP networks
trained on a corpus of text to predict either the context of a given word,
or a word given its context. In addition to words, embeddings can also
be computed of other language units, such as characters [16, 44, 139] and
sub-words [15]. More recently, more complex Transformer-based language
models have been developed for the computation of high-queality word em-
beddings [32].

2.1.2 Recurrent Networks

The recurrent neural network (RNN) di�ers from the MLP in that it has
been designed for processing sequential inputs x = (x1, x2, . . . , xn). In this
thesis, we propose recurrent long short-term memory networks and their
bidirectional variant for sentence ordering in Chapter 6.

The main principle of the RNN is that at each time step t, in addition
to processing a new input xt, it receives information from previous time
steps and passes it on to the next one. Such connections from one time
step to the next can be assigned between di�erent layers of the network,
most commonly between its hidden layers. Such an RNN is illustrated in
Figure 2.2. That is, the network's hidden state h is updated at each time
step t based on the previous hidden state ht−1 and the input xt. The hidden
states and outputs are then computed as

ht = tanh(Vht−1 +W1xt + b1)

y = g(W2ht + b2)

where g is output activation, W1,W2,V are the weights, and b1,b2 are the
biases. The di�erence from MLP is the additional weight matrix V between
hidden states. In a bidirectional RNN [126], the hidden state consists of
two layers, one for each direction of the sequence, which has been found
to preserve information better while doubling the hidden state's number of
parameters.

Language Models

A language model generates sequences of language units, usually at the
level of words or characters, given some context as input. Language mod-
els constitute a fundamental component of many higher-level NLP solu-
tions [18, 32, 108]. A common neural language model is an RNN which,
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Figure 2.2: A recurrent neural network with connections between hidden
states.

given a sequence of word embeddings X = (x0, . . . ,xn), aims to learn the
distribution

P (X) ≈
n∏

t=1

P (xt|xt−1, . . . ,x0),

that is, the probability of the sequence as a product of the conditional
probabilities of previous words. The same principle applies to Transformer-
based language models, which we use in Chapter 6.

LSTM Networks

Long short-term memory (LSTM) networks [56] have been designed to cap-
ture long-term dependencies more e�ectively than the basic RNN. To do
this, the hidden state ht is complemented with a cell state Ct and several
gates, which control the �ow of information in the network. These gates
are a forget gate ft, an input gate it, and an output gate ot, which are all
associated with their own parameters with regard to the previous hidden
state ht−1 and input xt. These are computed similarly to ht above, but
using a sigmoid activation to produce values between 0 and 1. The cell
state Ct is then updated as

Ct = ftCt−1 + it × tanh(Vht−1 +W1xt + b1)

and the new hidden state as ht = ot × tanh(Ct), controlled by the out-
put gate. As RNNs, LSTMs can also be bidirectional or arranged into a
sequence-to-sequence architecture, and have been used for training language
models [108].

Sequence-to-Sequence Networks

Most notably used in neural machine translation and other generation tasks,
a sequence-to-sequence architecture consists of two recurrent networks: an
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Figure 2.3: A sequence-to-sequence network with RNN encoder and de-
coder.

encoder and a decoder. In this thesis, we use such an architecture in the
pointer network in Chapter 6 to encode shu�ed sentences and decode them
in the correct order. Sequence-to-sequence networks have been most notably
applied to machine translation.

While the encoder works as the basic RNN described above, its purpose
is to encode the input sequence x = (x1, . . . , xn) into its last hidden state
en, as illustrated by Figure 2.3. This input sequence representation is then
used to initialise the decoder's hidden state, that is d0 = en. Given ini-
tially a start token (e.g. a random vector), the decoder predicts the �rst
output element y0. Using the previous output as the next input, the decoder
predicts the output sequence y = (y0, . . . , ym). As opposed to using each
output as the next input, a globally more probable output can be obtained
using algorithms such as beam search.

Since sequence-to-sequence RNN networks also struggle to capture long-
term dependencies, the attention technique has been proposed to alleviate
the bottleneck problem of more recent inputs being weighted more. The
attention mechanism is based on computing a speci�c representation of
encoder hidden states, to which the softmax activation is applied. This
results in element-wise attention weights for the inputs, which can be used
to compute a new hidden state for the decoder. Di�erent variants of this
mechanism exist, including additive [7] and multiplicative [92] attention, of
which we use the former in the pointer network in Chapter 6.

2.1.3 Convolutional Networks

The convolutional neural network (CNN) is specialised for grid-like data
such as images, but they have also been found to perform well at certain
NLP tasks such as sentence classi�cation [129] and character-based language
modelling [70, 158]. Likewise, we �nd a convolutional network to perform
well at our tasks in this thesis.
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Figure 2.4: A convolutional neural network with one convolutional layer,
consisting of both one convolution (cross-correlation) and a pooling layer,
followed by one fully-connected hidden layer. Both convolution and pooling
widths are equal to two nodes.

A convolutional layer usually consists of three operations: convolution,
activation, and pooling. In contrast to the MLP with fully-connected lay-
ers, in the convolution a kernel with weights W ∈ Ri×j is cross-correlated
with equal-sized portions of the input X ∈ Rn×m, in the two-dimensional
case. This is illustrated in Figure 2.4 with a one-dimensional CNN, where
each node in the convolutional layer is connected only to two nodes of the
input layer. An activation function, usually ReLU, is applied to the re-
sulting output, followed by a pooling operation. For example, max-pooling
takes the maximum value within a certain window, equal to two nodes in
Figure 2.4. This convolutional layer consisting of both a convolution and a
pooling operation is usually followed by a fully-connected hidden layer, and
�nally the output layer.

The bene�t of convolutional layers is that the kernel requires fewer pa-
rameters and is equivariant to the input. That is, since the convolutional
kernel is moved through the grid-like input in a sliding window, the weights
are less a�ected by features' exact positions in the input. In addition to
many computer vision applications, this is useful even for our tasks in this
thesis. In cognate identi�cation, we are more interested in whether certain
substrings are present in a word than in their position within the word (see
Section 3.1). In addition, in Chapter 6, we observe that a convolutional
network outperforms a recurrent one at sentence classi�cation.



14 2 Background

2.1.4 Multiple-Input Networks

While we have so far addressed architectures where one input is processed
at a time, certain tasks require the comparison of several inputs simultane-
osly. The most common form of such multiple-input networks are Siamese
networks considering two inputs at a time. Such consist of two identi-
cal networks processing their respective inputs simultaneously, producing
a hidden-layer representation of each. These representations can then be
compared using a similarity metric, e.g. cosine distance, or merged into one
representation and fed forward to a following layer as a single input.

Multiple-input architectures can be constructed from di�erent types of
networks, including Siamese variants of feed-forward and recurrent networks
for NLP [24, 130] as well as convolutional networks for learning image sim-
ilarity [26]. In this thesis, we propose both convolutional and recurrent
Siamese networks for our tasks, both to learn cognacy between words (Chap-
ters 4�5) and to order sentences (Chapter 6).

2.1.5 Transformers

More recently, the Transformer [144] architecture has become prevalent
in NLP, outperforming recurrent neural networks in language modelling
and a wide range of downstream tasks. In particular, language models
trained on massive datasets are based on Transformers, and have been found
to perform well when �ne-tuned for speci�c tasks [18]. The Transformer
is based on giving up the sequential architecture and using instead self-

attention and positional encodings for tokens. As a sequence-to-sequence
model, it consists of an encoder and a decoder. While both are required for
generative tasks such as language modelling, the encoder can be used alone
to compute embeddings of language tokens, usually words [32].

The encoder's architecture is illustrated in Figure 2.5. Given an initial
input sequence of tokens, the embedding layer turns each token into a �xed-
size embedding. In order to keep track of the inputs' order in the sequence,
each input embedding is summed with a positional encoding indicating a
token's relative position using sine and cosine functions. The result is then
fed to a stack of encoder layers, where each encoder layer consists of two
sub-layers: multi-head self-attention and a feed-forward hidden layer, each
one followed by layer-normalisation [6]. The multi-head attention layer uses
several heads of self-attention, that is, dot-product attention between each
token and all other tokens in the same sequence, allowing the model to
e�ciently compute context-dependent representations. The Transformer's
encoder is the basis for doing this in models such as BERT [32]. In this
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Figure 2.5: The encoder of the Transformer architecture [144].

thesis, we use its variant, Sentence-BERT [120], to obtain embeddings of
sentences and tokens for our document planning task in Chapter 6.

When used as a sequence-to-sequence architecture, such as in language
modelling, the outputs of the Transformer's encoder are fed to a stack
of decoders layers. Similarly to the encoder layers, each decoder layer
consists of self-attention and feed-forward hidden layers followed by layer-
normalisation. However, between these two sub-layers is an additional hid-
den layer computing attention between encoder and decoder representa-
tions. The decoder layer stack produces a representation corresponding to
the predicted next token given the inputs, which is then fed to a fully-
connected layer followed by a softmax layer, �nally indicating the actual
token predicted. This is then taken as input by the next decoding step.

2.2 Transfer Learning

In traditional supervised learning, a model is �rst trained on labelled data
for a certain task, and it is then expected to perform well at this task given
some unseen test data. This paradigm is based on the assumption that both
training and test datasets have the same feature spaces and underlying data
distributions, and that there is only one task. Given another test dataset
with a di�erent feature space or data distribution, or a di�erent task, a
new model has to be trained on a new training dataset. This is illustrated
in Figure 2.6, where models MA and MB are trained and tested on their
respective datasets DA and DB, for their respective tasks TA and TB.
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Figure 2.6: Supervised learning.

ModelMA Knowledge ModelMB

Source task TS
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Figure 2.7: Transfer learning.

In real-world applications, it is common that some of these assumptions
regarding datasets and tasks do not hold, and that a new model cannot be
trained easily. For example, labelled data in dataset DB might be insu�-
cient for training modelMB for task TB. However, given that dataset DA

is to some extent related to DB, modelMA can be trained on DA for task
TA, the knowledge gained transferred to modelMB, which can be applied
to dataset DB and task TB. This is the paradigm of transfer learning, illus-
trated in Figure 2.7, where a model is trained on source data for a source

task, and applied to target data and a target task. In the context of neu-
ral networks, the transferred knowledge is typically in the form of learned
representations.

2.2.1 De�nition

Transfer learning addresses machine learning scenarios where there is a mis-
match between source and target data or source and target tasks. Pan and
Yang [103] propose a theoretical framework for transfer learning, which was
further developed by Ruder [123]. They de�ne a domain D as a pair

D = {X , P (X)}

where X is a feature space and P (X) is the marginal probability distribu-
tion over data X ∈ X . In the context of NLP, X is usually a language,
represented as a set of words or characters, of which X is a sample dis-
tributed according to P (X). For example, P (X) could represent a text
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genre. In NLP, the term domain usually refers only to P (X). In this thesis
we adopt this convention, and refer to D instead as a learning domain.

Given a learning domain D, a learning task T is de�ned as

T = {Y, P (Y ), P (Y |X)}

where Y is a label space, P (Y ) is a prior distribution over the labels, and
P (Y |X) is a conditional distribution over the labels given data X. Typi-
cally, P (Y |X) is learned from a training datasetD = {(x1, y1), . . . , (xn, yn)},
where xi ∈ X and yi ∈ Y . For example, in binary classi�cation tasks, the
label space is Y = {0, 1}.

A transfer learning scenario is characterised by a source learning domain
DS and a corresponding task TS , as well as a target learning domain DT

and a corresponding task TT . The objective is then to learn the target
conditional distribution PT (YT |XT ) using information learned from DS and
TS , when DS ̸= DT or TS ̸= TT . Otherwise, if DS = DT and TS = TT , the
problem reduces to supervised learning and no transfer learning is needed.

2.2.2 Conditions

From the de�nitions above it follows that there are in total �ve components
where DS and DT or TS and TT can di�er, giving rise to various transfer
learning scenarios with their respective solution approaches. Corresponding
to these components, the following conditions can occur either alone or
together with others in one learning scenario.

(1) XS ̸= XT : Data samples come from di�erent feature spaces. In NLP,
this is typical when training and test datasets are in di�erent lan-
guages. We face this condition in Chapters 4�5, where we transfer
cognate identi�cation models from one set of languages to another.

(2) PS(XS) ̸= PT (XT ): The marginal distributions of source and target
data are di�erent. This condition is known as domain shift, which we
face throughout this thesis: in Chapters 4�5, our source and target
data are from di�erent languages, and since there is no one-to-one
mapping between the feature spaces, the distributions are di�erent.

(3) YS ̸= YT : The source and target tasks' label spaces are di�erent. We
face this condition in Chapter 6, where our source task is sentence
ordering and our target task is document planning. Meanwhile, in
Chapters 4�5, source and target label spaces are both binary.
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(4) PS(YS) ̸= PT (YT ): The prior distributions of source and target labels
are di�erent. This is the case in both of the tasks we address in this
thesis. In Chapters 4�5, while label spaces are the same, they are
di�erently distributed in source and target datasets. In Chapter 6,
this condition follows from condition 3.

(5) PS(YS |XS) ̸= PT (YT |XT ): The conditional distributions of source
and target labels are di�erent given the data. That is, there is a class
imbalance between source and target datasets. A common condition,
which we also observe in each of Chapters 4�6.

2.2.3 Taxonomy

Pan and Yang [103] propose a taxonomy of transfer learning approaches
addressing the above conditions. Its adaptation to NLP by Ruder [123] is
shown in Figure 2.8. In this taxonomy, the two main categories of trans-
fer learning are transductive and inductive learning. In inductive transfer
learning, the domains are the same, DS = DT , while tasks are di�erent,
TS ̸= TT , at least in some of their components. Transductive transfer learn-
ing addresses the opposite case, where DS ̸= DT , but TS = TT . In practice,
real-life learning scenarios are often a combination of these two categories.

Transductive transfer learning is further divided into two categories, de-
pending on which inequality between source and target domains is present.
Domain adaptation addresses domain shift, when P (XS) ̸= P (XT ), while
cross-lingual adaptation addresses scenarios with di�erent source and tar-
get languages and disparate feature spaces, XS ̸= XT . In this thesis, we
deal with transductive transfer learning for cognate identi�cation in Chap-
ters 4�5. As our source and target languages are di�erent, and there is no
one-to-one mapping between source and target samples, it follows that the
distributions are di�erent as well [123]. In transductive transfer learning,
it is assumed that labelled target data is either not available or only in
small amounts. This is the case in our low-resource scenarios addressed in
Research Tasks RT-I and RT-II (see Section 1.2).

Inductive transfer learning is likewise divided into two categories: se-

quential and multi-task learning. This distinction depends on whether
source and target tasks are learned sequentially or simultaneously. In Chap-
ter 6, we apply sequential transfer learning to neural document planning. In
inductive transfer learning, it is usually assumed that labelled target data
is available. Although this is not our case, we create labelled data through
distant supervision.
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Figure 2.8: Taxonomy of transfer learning approaches, adapted to NLP by
Ruder [123] from the original of Pan and Yang [103].

2.2.4 Domain Adaptation

In domain adaptation (DA), the aim is to learn a predictive function f ,
usually the target conditional distribution PT (YT |XT ), from a source learn-
ing domain DS under the domain shift condition PS(XS) ̸= PT (XT ). The
source and target tasks are the same however, TS = TT . In NLP, example
scenarios of domain shift include cases where source and target data have
di�erent genres or topics. Although feature spaces are typically the same,
XS = XT , they can also be di�erent, a scenario addressed by heterogeneous

domain adaptation [159]. DA methods can be supervised, unsupervised,
or semi-supervised [109], of which we use the �rst two alternatives in this
thesis. Regardless of the degree of supervision, DA methods in NLP can be
grouped into two main categories: data-centric and model-centric [119].

Data-centric methods include pseudo-labelling, data selection and weight-
ing, as well as pre-training. In pseudo-labelling, a trained classi�er is used
to predict labels for further training in a semi-supervised setting, while data
selection and weighting aims to select or weight data so that performance
on target data improves. In this thesis, we use pre-training and �ne-tuning
for cognate identi�cation in Chapter 4.

Model-centric methods can be either feature- or loss-centric. Feature-
centric methods include feature augmentation and generalisation, while
methods such as domain-adversarial neural networks and loss reweighting
belong to the latter category. Feature augmentation represents an earlier
supervised approach, where both domain-speci�c and domain-general fea-
tures are created [31]. Feature generalisation uses autoencoders to learn
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lower-dimensional latent representations that are robust across domains
and reduce domain shift [40]. Similarly, domain-adversarial networks aim
to do the same by simultaneously training a predictor while maximising
the confusion of a discriminator trying to distinguish between source and
target features [3, 36, 127]. This approach has been found to work well in
computer vision [19, 106] but also in cross-lingual NLP [146]. We review
the use of this method in low-resource NLP later in Section 2.3.3. In loss
reweighting, distribution similarity measures, such as maximum mean dis-
crepancy [45], are used to de�ne loss functions that guide training towards
learning domain-general features.

2.2.5 Cross-Lingual Adaptation

In cross-lingual adaptation, source and target feature spaces are di�erent,
that is XS ̸= XT , which occurs in NLP particularly when source and target
languages are di�erent. In many real-world transfer learning scenarios, both
feature spaces and data distributions are di�erent to some extent. However,
in cross-lingual adaptation it is generally assumed there is a correspondence
between source and target features, that is, the representations of language
units [123]. The objective of cross-lingual adaptation is thus to learn a
mapping f : XS → XT , which allows the approximation of target data
distribution as PT (XT ) ≈ PS(f(XS)).

There are several approaches to cross-lingual adaptation, including mul-
tilingual language models [28, 90], and aligned or combined monolingual
representations [79]. Pre-trained language models have been found e�ective
especially when pre-trained on large amounts of data in high-resource lan-
guages and applied to low-resource ones, even without further adaptation,
depending on language relatedness [58, 59, 88]. In such cases, �ne-tuning
with target-language data brings fast improvements [54, 81].

Alignment of monolingual representations, embeddings, results in a com-
mon feature space for source and target languages. This can be done at
di�erent levels of language units, most commonly words [e.g 1, 58, 88], but
also characters [16, 44, 140], sub-words [15, 143], sentences [4], and even lan-
guages [58]. Alignments of such embeddings can be learned from multilin-
gual datasets where language-speci�c data is either parallel or comparable.
In the case of words, one prominent way to align monolingual embeddings
is by learning a mapping between them [124]. For example, supervised
learning from bilingual dictionaries [1] but also unsupervised learning with
adversarial training [78] have been applied to this task. Moreover, cognate
information has been found to enhance such methods [53].
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2.2.6 Sequential Learning

In Ruder's [123] taxonomy, sequential transfer learning is speci�cally con-
cerned with scenarios where TS ̸= TT , the source and target tasks dif-
fer. However, we note that sequential learning is not only applicable when
source and target tasks are di�erent, but can also be considered a method
of supervised domain adaptation [119] or cross-lingual adaptation [55], de-
pending on the learning scenario. Sequential learning consists of two stages:
pre-training and adaptation.

There are three approaches to pre-training a model on source data: di-
rect supervision, distant supervision, and unsupervised learning. The most
straightforward approach is direct supervised learning using labelled source
data, the availability of which varies according to scenario. In distant super-
vision, labelled training data is automatically obtained from some auxiliary
data exploiting heuristics and external information, introduced by Mintz et
al. [98]. Finally, unsupervised pre-training requires only unlabelled source
data, which makes it the most scalable approach. For example, using pre-
trained embeddings for a target task can be considered a form of sequential
learning [123].

The two main approaches to adapting a pre-trained model are feature
extraction and �ne-tuning. In feature extraction, representations learned
in pre-training (e.g. embeddings) are directly used as input to the target
task, while �ne-tuning continues to train the representations using labelled
target data. In �ne-tuning, it is common to update only a subset of a
neural network's layers. For example, �ne-tuning large language models for
speci�c tasks has resulted in superior performance across a wide range of
NLP tasks [18, 32].

2.3 Low-Resource NLP

In this thesis, we apply neural networks and transfer learning to low-resource
scenarios of NLP. Low-resource NLP is concerned with overcoming resource
scarcity utilising a spectrum of methods depending on speci�c resource
conditions. These methods have two main categories [55]. First, there
are methods that reduce the need for labelled target data, including pre-
training and latent feature learning. Second, there are those that generate
additional labelled target data, such as data augmentation, distant super-
vision, and cross-lingual projection. We give a brief overview of methods
relevant to this thesis: �ne-tuning a pre-trained model (Chapter 4), domain-
adversarial networks (Section 5.2), cross-lingual character-level representa-
tions (Section 5.3), and distant supervision (Chapter 6). We consider these
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in the context of extreme resource conditions, which we refer to as truly
low-resource scenarios.

2.3.1 Resource Availability

In the context of NLP, resources refer to the amount and quality of labelled
and unlabelled training data as well as NLP tools in a language or domain,
which modern applications depend on. The more resources there exist in
a certain language, the more complex and higher-level applications can be
built. For example in English, high-quality applications exist for di�cult
high-level tasks such as question answering, while low-resource languages
might only have tools for basic tasks such as tokenisation and morphological
analysis [55].

Although the term low-resource is widespread in the �eld, there is no
exact de�nition of the amount of resources that makes a language or domain
low-resource. In fact, there is great variance in data resources depending on
language, domain, and task, which does not necessarily correlate with the
number of language speakers [63]. For example, languages such as Quechuan
with 60 million speakers have few resources, while Estonian with one mil-
lion speakers has relatively large resources. Likewise, even within languages
classi�ed as endangered, some have signi�cantly larger resources than oth-
ers [49]. Ultimately, resource requirements depend on the speci�c scenario,
implying that the concept of low-resource is task-, language-, and domain-
speci�c [55]. That is, even within a high-resource language, resources might
be scarce for some domains or tasks.

Hedderich et al. [55] categorise low-resource scenarios according to the
availability of three kinds of data:

(1) Task-speci�c labels. Availability of labelled data in target language or
domain determines whether direct supervised learning is feasible in a
given scenario.

(2) Unlabelled language- or domain-speci�c data. Availability of unla-
belled data in target language or domain determines the feasibility of
unsupervised training of, for example, language representations.

(3) Auxiliary data. Availability of auxiliary data determines the applica-
bility of transfer learning methods using the auxiliary data as their
source data (see Section 2.2).

In this thesis, we address scenarios that are truly low-resource. That is,
they are extreme cases along at least one of the above dimensions of re-
source availability. In Chapters 4�5, we examine the task of cognate iden-
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ti�cation between Uralic languages, including de�nitely endangered North
Sami (∼25,000 speakers) and North Karelian (∼20,000 speakers) as well as
severely endangered South Sami (∼600 speakers), Skolt Sami (∼300 speak-
ers), and Ingrian (<100 speakers) [99]. We consider also the higher-resource
Finnish and Estonian, since they are truly low-resource with regard to our
task. Having access to distant auxiliary data in another language family,
the Indo-European, we address scenarios with a tiny amount of task-speci�c
labelled target data (Chapter 4) and only unlabelled language-speci�c data
(Chapter 5). In Chapter 6, we focus on the task of document planning for
news generation. Although we do this in the high-resource English language,
we face a scenario without any task-speci�c labelled data, but only auxiliary
data, which we leverage for our target task using distant supervision. Such
scenarios of low-resource domains are common in NLG tasks [57].

2.3.2 Pre-Training and Fine-Tuning

Pre-training and �ne-tuning is a straightforward and e�ective approach to
supervised adaptation across both languages and domains. In this thesis,
we use supervised pre-training and �ne-tuning for cognate identi�cation in
Sami languages in Chapter 4. This is a case of sequential transfer learning,
where a small amount of labelled target data is available, although not
su�ciently for direct supervision. Since labelled data for the same task
is available in relatively large amounts in unrelated languages of another
language family, we use this data for supervised pre-training.

Pre-training and direct transfer alone can already be e�ective when
source languages are high-resource and related to target languages [58,
88]. While direct transfer across language families is challenging [59], �ne-
tuning has been shown to bring about signi�cant bene�ts already with small
amounts of labelled target-language data at both lower-level and higher-
level tasks [54, 81]. Thus, we will investigate the amount of labelled target
data required for e�ective �ne-tuning in Chapter 4.

2.3.3 Domain-Adversarial Networks

Domain-adversarial neural networks (DANs) are a method of latent feature
learning, for unsupervised adaptation across domains and languages. DANs
have gained more research interest in NLP recently, following the success
of similar methods in computer vision. The aim of latent feature learning
is to make source and target data more similar to each other by projecting
them to a common, lower-dimensional representation space. DANs do this
by simultaneously learning a predictor for a given task and maximising the
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confusion of a discriminator trying to distinguish between source and target
representations, using a gradient reversal layer [36].

In NLP, both cross-domain and cross-lingual transfer is possible using
domain adversaries. For example, they have been used for domain adapta-
tion in duplicate question detection [65, 127] and social media post classi-
�cation [3]. In terms of cross-lingual adaptation (or heterogeneous domain
adaptation), Chen et al. [23] propose a method in the context of sentiment
classi�cation, training a language discriminator adversarially with a feature
extractor. Likewise, Kim at al. [68] use a similar method for cross-lingual
transfer of POS tagging.

The bene�t of domain-adversarial networks is their scalability and gen-
erality, as they require only unlabelled target data. Therefore, we propose
discriminative adversarial networks in Chapter 5 for cognate identi�cation,
following an adaptation method developed for image domains [142].

2.3.4 Cross-Lingual Character Representations

As discussed in Section 2.2.5, en e�ective approach to cross-lingual adapta-
tion is the use of pre-trained language representations, most commonly in
the form of word embeddings [55]. However, as we address the low-level task
of cognate identi�cation in this thesis, we are more interested in character-
level representations. Thus, in Chapter 5, we propose to enhance our neural
cognate identi�cation model with symbol embeddings pre-trained using the
Xsym model [44].

The quality of word embeddings depends on the language they have been
trained on, working inadequately on morphologically-rich languages such
as Finnish and Turkish [143]. Thus, instead of considering single words as
atomic units, sub-word embeddings [15] and neural character-level language
models [70] have been proposed for such cases. Character-level representa-
tions have also been found useful for text classi�cation [158] and machine
translation [82, 100]. In addition to being useful for di�erent tasks, charac-
ter representations encode phonological information about languages, being
valuable for linguistics [16, 44].

2.3.5 Distant Supervision

As a method of sequential transfer learning, distant supervision refers to
the use of heuristics and external sources of information to construct la-
belled source data for pre-training, from some unlabelled auxiliary data. In
Chapter 6, we do this for the target task of document planning for news
generation. From auxiliary data, namely a news corpus, we construct a
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training dataset for the task of sentence ordering, our source task. (We
refer to the unannotated data as auxiliary data, and to the constructed
labelled training data as source data.)

Many forms of distant supervision have been used in NLP, and it is pop-
ular in certain tasks with structured knowledge sources, such as information
extraction [55]. The heuristics for automatic annotation depend on the use
case, ranging from string matching [153] to complicated pipelines [101]. In
addition to annotating unlabelled data within the same language and do-
main, distant supervision has also been used for cross-lingual transfer in
part-of-speech tagging, exploiting a combination of annotation projections,
lexicons, and representations [110]. Similarly, distant supervision has been
found e�ective for language modelling in truly low-resource languages [54].
Distant supervision has proven useful even for higher-level tasks such as
discourse parsing [60], encouraging its use in our document planning task.
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Chapter 3

Tasks

Low-resource NLP is concerned with various scenarios and tasks, each set-
ting requiring a tailored approach depending on resource availability, as
discussed in Section 2.3. In this chapter, we present the speci�c NLP tasks
we address in this thesis: cognate identi�cation, and document planning
for news generation. For each task, we provide a brief background and
literature review.

3.1 Cognate Identi�cation

Cognate identi�cation refers to the task of identifying etymologically related
words across languages, and it is a core task in historical linguistics [89].
In addition, it is a supportive task for the cross-lingual transfer of many
low-level NLP tasks, such as processing non-standard orthographies [35],
morphological analysis [47, 51, 96], part-of-speech tagging [125], as well
as word-level translation [53, 100]. Cognate information is also useful for
language learning [11].

Historical linguistics is the study of language change over time. One of
its most important areas is the comparative method, which aims to estab-
lish historical relatedness between languages by comparing them, especially
their words. It is used to group languages into families, to infer phylogenetic
trees re�ecting family relationships, and to reconstruct ancient languages,
among other historical linguistic tasks. A map over the world's language
families is shown in Figure 3.1, together with a phylogenetic tree illustrating
how languages within a family descend from a common root language. Al-
though some languages' historical family relationships are well-established,
this is not the case for many truly low-resource languages with few speak-
ers and scarce resources. Since language comparison is manually laborious,

27
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en sv da de nl ro fr it es pt lv lt pl sk cz sl bg

Figure 3.1: Above: the geographic spread of the world's language families
indicated by di�erent colours. Below : a phylogenetic tree for a subset of
the Indo-European family. (Source of above image: Wikimedia Commons.)

computational approaches have been taken to automate some of the in-
volved tasks [17, 21, 64, 73, 89]. The study of etymology, the history of
words, is another branch of historical linguistics and closely related to the
comparative method. To determine language relatedness, it is essential to
compare the words of di�erent languages and to identify those that share a
common origin, that is, that are etymologically related, as well as the type
of etymological relation.

Formally, in cognate identi�cation we are given two string sets X =
{x1, . . . , xn} and Y = {y1, . . . , ym}, and the task is to extract those pairs
(x, y) in relation R such that

R = {(x, y) ∈ X × Y | x is cognate with y }

where each element x ∈ X and y ∈ Y is a string over alphabets Σx and
Σy respectively. The alphabet sets do not necessarily overlap, since the
orthographies of di�erent languages tend to vary.
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Next, we clarify several kinds of cross-lingual etymological relations and
give our de�nition of cognacy. Then, we review the literature on two kinds
of approaches to the cognate identi�cation task: heuristic string metrics
and more recent data-driven methods.

3.1.1 Etymological Relations

In historical linguistics, cognates are words from di�erent contemporary lan-
guages descending from the same historical root word. Figure 3.2 illustrates
the cognate relation and an example cognate set for the word night. Cog-
nates only exist between related languages, such as English and German
(e.g. head and Haupt). Loanwords, in contrast, are words that have been
borrowed from one language to another through language contact, regard-
less of relatedness. For example, Finnish and Swedish have many loanwords
between each other despite being unrelated. Loanwords can be phonetically
adapted to the borrowing language (e.g. English mutton from French mou-

ton), borrowed directly (e.g. English rucksack from German Rucksack), or
translated (e.g. English loanword from German Lehnwort). Etymological
relations exist also within languages, such as derivations and compounds,
but these are not relevant in cross-lingual settings.

The de�nition of cognate varies in NLP literature. Apart from work us-
ing the historical linguistic de�nition given above [62, 76, 89], more relaxed
de�nitions have been motivated by practical concerns. Some authors refer
to any etymologically related pair of words as cognates, including loan-
words [10, 13, 74], while others de�ne cognates as words sharing both a
similar form and common meaning [12, 100]. This last de�nition is prob-
lematic for historical linguistics, since it excludes cognate words having
di�erent meanings, but may be more useful for some applications, such as

W

w1 w2

ϕ1 ϕ2

cognates

*nókwts

night Nacht natt noche nuit notte noq~

ϕen ϕde ϕse ϕes ϕfr ϕit ϕru

Figure 3.2: Left: the cognate relation, where words w1 and w2 from two
contemporary languages originate from some common rootW , through pho-
netic transformations ϕ1 and ϕ2. Right : contemporary cognates to the word
night descending from a reconstructed Proto-Indo-European root.
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Word x Word y Meaning of x Meaning of y

it: notte es: noche `night' `night'
en: attend fr: attendre `attend' `wait'
�: huvittava et: huvitav `amusing' `interesting'
en: oath sv: ed `oath' `oath'
�: pöytä sv: bord `table' `table'
en: bite fr: fendre `bite' `split'

Table 3.1: Examples of etymologically related words (i.e. cognates). The
degree of similarity in form and meaning varies signi�cantly.

word translation [53]. In this thesis, we regard any cross-lingual pair of
etymologically related words as cognates, including both true cognates as
well as loans from one language to another.

Several factors have been found to predict cognacy: phonetic similarity,
re�ected by orthographic similarity [16], semantic similarity, and the pres-
ence of regular sound correspondences, word segments regularly occurring
in similar phonetic positions and contexts [76]. The example cognates in
Table 3.1 illustrate the complexity of cognate identi�cation. A straight-
forward example is the Italian�Spanish pair notte�noche, with a similar
form and common meaning. However, many cognates have similar surface
forms, but di�er in meaning, such as the English�French actual�actuel and
Finnish�Estonian huvittava�huvitav, that is, they are false friends.

Furthermore, cognates might look very di�erent on the surface. English�
Swedish cognates oath�ed and Finnish�Swedish pöytä�bord look quite dif-
ferent, but share a meaning. On the other hand, English�French bite�fendre
are similar neither in form nor meaning. The only way to recognise such
cognates from their surface forms alone is to identify regular correspon-
dences, such as th�d for English�Swedish. Consequently, and in contrast
to much previous work, we make no strict assumptions about the degree of
similarity in form or meaning that any two cognates should exhibit. Instead,
following Jäger [64], we treat regular correspondences as the main driving
factor in the cognate relation and attempt to capture these in a completely
data-driven manner.

3.1.2 String Metrics

Earlier computational approaches to cognate identi�cation attempt to de-
sign a string similarity (or distance) metric that assigns a higher score to
cognate words and a lower score to unrelated ones. A common approach
is to extend the traditional Levenshtein distance [85], also known as edit
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distance. The Levenshtein distance (LD) between strings s1 and s2 over an
alphabet Σ is computed as the minimum number of insertion, deletion, or
substitution operations needed to transform one string to the other. For
example, cognate pairs coupe�Kopf and pöytä�bord have distance values of
3 and 5. That is, coupe can be transformed into Kopf with three opera-
tions, namely substitutions c→K and e→f, and deletion of u. Likewise,
with four substitutions (p→b, ö→o, y→r, t→d) and one deletion (of ä),
pöytä is transformed into bord.

LD has been extended by associating speci�c weights to pairs of sym-
bols using linguistic knowledge [e.g. 73, 89], or sets of example cognates
[e.g. 12, 117]. For example, the ALINE algorithm [73] uses speci�c weights
based on several pre-determined phonetic features. Furthermore, LD has
been generalised with an n-gram similarity measure [75]. Another method
involves a heuristic based on mapping consonants to ten classes, and con-
sider words matching in their �rst two consonant classes to be cognates [141].
Similarly, the sound-class-alignment algorithm of List [89] uses a large set of
sound classes and also considers prosodic aspects of words. Others rely on
learning regular correspondences (sometimes called mismatches or substi-
tution patterns) from example cognates using an alignment algorithm. For
example, Gomes and Pereira Lopes [41] develop a weighted string similarity
metric for words in orthographic form by extracting substring pairs from
example cognate sets.

3.1.3 Data-Driven Approaches

In addition to weighted string similarity metrics, especially more recent work
on cognate identi�cation has utilised data-driven approaches, most notably
the support vector machine [29]. The support vector machine (SVM) is a
supervised learning model trained by �nding the optimal separating hyper-
plane between multi-dimensional data points of di�erent classes.

The basic SVM is a non-probabilistic, linear binary classi�er. For data
that is linearly separable, the optimal hyperplane creates the maximum
margin between training points in the two classes. The maximum-margin
hyperplane is of the form

wTxi + b = 0

where xi is an input vector, w is a weight vector, and b is a bias term. The
classes are then separable so that wTxi + b < 0 when the corresponding
class is yi = 0, andwTxi+b ≥ 0 when yi = 1. When the data classes are not
linearly separable, the margin can still be maximised while allowing some
data points to be on the wrong side of the optimal hyperplane. Another
approach is to use a non-linear kernel function, such as a polynomial or a



32 3 Tasks

radial-basis function, to transform the feature space to a higher-dimensional
one, making the classes linearly separable.

In previous work, SVMs have been used in combination with string simi-
larity metrics. For examples, substring pairs [12, 27] or gap-weighted subse-
quences extracted from cognate sets have been used as SVM features. Sim-
ilarly, Hauer and Kondrak [52] convert word pairs into features for an SVM
using a set of string similarity metrics. This approach has been extended
with features for semantic similarity, for example using the lexical database
WordNet [62, 76, 136]. The use of global constraints and reranking [13]
has also improved the performance of SVMs relying on string-similarity
features. In Chapter 4, we use a linear SVM, vectorising word pairs with
string metrics.

Pre-trained language representations have also been used to enhance
cognate identi�cation, including both cross-lingual word embeddings [66,
136] and character embeddings for a weighted LD-based metric [94]. A sim-
ilar approach to learning weights is by pointwise mutual information [64].
More recently, also neural networks have been applied to cognate identi�-
cation. Rama [118] proposes a Siamese convolutional network to identify
cognates in multilingual wordlists, using both phonetic and one-hot vectors
as input encodings. We propose a similar neural model in Chapter 4. On
the other hand, Kanojia et al. [67] use a Siamese feed-forward network. Fur-
thermore, Hämäläinen and Rueter [50] apply neural machine translation to
cognate prediction, similarly to Beinborn at al. [10].

3.2 Document Planning

Document planning is a fundamental task in data-to-text natural language
generation (NLG), the production of text outputs from underlying data in
non-linguistic form [121]. According to Gatt and Krahmer [37], data-to-text
NLG consists of six main stages, forming a pipeline turning input data into
output text. The stages include the following:

(1) Content determination, selecting the information in the output;

(2) Text structuring, determining the order of presented information;

(3) Sentence aggregation, allocating information to individual sentences;

(4) Lexicalisation, �nding words and phrases to express the information;

(5) Referring expression generation, selecting words and phrases to iden-
tify di�erent entities; and
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(6) Linguistic realisation, combining words and phrases into well-formed
sentences.

Document planning consists of the �rst two stages, content determination
and text structuring [137]. In this thesis, we refer to these stages as content
selection and document structuring, following Leppänen and Toivonen [84].
These stages are usually preceded by turning the data into messages, se-
mantic representations of input data samples. In Chapter 6, we consider
document planning in the context of their system, generating statistical
news reports from structured data in a truly low-resource scenario. Similar
resource scarcity is common in NLG tasks [57].

3.2.1 Characteristics of News

The reporting of news as a presentation of observed facts is a common
application of data-to-text NLG [37]. Such news have been referred to as
hard news [84], including domains such as sports, weather, �nance, economy,
and so on. In Chapter 6, we deal with the generation of statistical news
based on consumer price index data.

Since data usually contains more information than is desirable to be
included in the output, content selection attempts to �lter out the most rel-
evant information from input data. While the appropriate method depends
on the domain, one way is to use measures of statistical outlierness [38, 83],
which we consider applicable to our statistical news context. Intuitively,
newsworthy information tends to deviate from the ordinary.

Regarding the structure of news, the most important information tends
to be presented at the beginning, followed by content providing additional
information [138]. This concept of importance has been used in previous
work on document planning [8, 38]. Furthermore, hard news have also been
characterised by an orbital structure, where a nucleus (e.g. �rst paragraph)
is `orbited' by satellites (other paragraphs) [148]. While the nucleus presents
the most important information, satellites provide additional details about
the nucleus. A similar terminology is used also in rhetorical structure the-
ory [93] to describe relations within paragraphs, suggesting that the orbital
theory can be applied to sentences within paragraphs [84].

3.2.2 Heuristics and Neural Methods

Despite being a crucial task for generation quality, document planning has
been relatively little addressed in NLP research [137]. Hand-engineered
approaches to document planning are based on rules or templates [37], or
speci�c metadata [84]. Although they are often more reliable than neural
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approaches [154], the scalability of these methods across domains is limited
by their dependence on domain-speci�c knowledge and heuristics.

More recently, an increasing amount of research has investigated data-
driven, and especially neural, approaches to the task, thus forgoing hand-
engineered rules. For example, Puduppully et al. [114] train a sequence-
to-sequence network with attention end-to-end, while modelling document
planning explicitly. Although such approaches are promising, they usually
depend on annotated training datasets where input data and human-written
output texts are aligned [5, 114, 115, 150]. Since such datasets are expensive
to gather, many domains are truly low-resource with regard to this task even
in generally high-resource languages [57, 137]. Addressing this issue of data
availability, Laha et al. [77] convert structured data �rst into tuples and
then into simple sentences using a sequence-to-sequence network. However,
they do not conduct any reordering of sentences, reducing the cross-domain
applicability of their method. In this thesis, we propose a neural approach
using distant supervision in Chapter 6.

3.2.3 Sentence Ordering

In Chapter 6, we propose distant supervision for document planning by
pre-training a neural model for sentence ordering, our source task. As il-
lustrated in Figure 3.3, in sentence ordering we are given an unordered
set of sentences S = {s1, . . . , sn}, and our goal is to predict its correct
ordering O = (o1, . . . , on), thus producing the correct sentence sequence
S′ = (so1 , . . . , son). Sentence ordering is a commonly used task in coher-
ence modelling, and a model trained for the task can be useful for many
other NLP tasks in addition to text generation, such as summarization,
question answering, and so on. As the aim of document planning is to
produce a coherent presentation of relevant information, we consider a sen-
tence ordering an appropriate source task. In previous work, several kinds
of machine-learning-based approaches have been taken to address the sen-
tence ordering problem, most of the recent work using neural networks.
These approaches include pairwise approaches [2, 24, 113, 128], graph-based
models [86, 155], sentence position modeling [14], and sequence-to-sequence
models [42, 91, 102, 147].

In pairwise approaches, a model is trained to predict whether one sen-
tence should precede another. Such a model can then be used for sorting an
unordered set of sentences by pairwise comparisons. This introduces a com-
binatorial search problem, which has been addressed using beam search [24]
and other approximations [2], as well as topological sort [113, 128]. The
models used include Siamese neural networks with convolutional [24] or re-
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(1) In contrast, wholesale trade sales went down by 1.5 per cent and

motor vehicle trade sales by 27.3 per cent from twelve months back.

(2) The volume of sales, from which the impact of prices has been

eliminated, grew by 1.4 per cent in retail trade over the same

period.

(3) According to Statistics Finland, retail trade sales grew by 4.6 per

cent in November from November 2011.

(4) In total trade, sales contracted by 3.4 per cent in November.

(5) In daily consumer goods trade, sales grew by 5.4 per cent and in

department store trade by 4.6 per cent year-on-year.

⇓
(3) According to Statistics Finland, retail trade sales grew by 4.6 per

cent in November from November 2011. (2) The volume of sales, from which

the impact of prices has been eliminated, grew by 1.4 per cent in retail

trade over the same period. (5) In daily consumer goods trade, sales grew

by 5.4 per cent and in department store trade by 4.6 per cent year-on-year.

(1) In contrast, wholesale trade sales went down by 1.5 per cent and motor

vehicle trade sales by 27.3 per cent from twelve months back. (4) In total

trade, sales contracted by 3.4 per cent in November.

Figure 3.3: The sentence ordering task.

current layers [2, 113]. In contrast, a sentence position model is trained on
individual sentences instead of pairs [14]. This approach is based on pre-
dicting which quantile of the correct sentence sequence (e.g. paragraph) a
sentence should belong to. Using such predictions, a sentence can be sorted
according to the average quantile predicted by the model.

More recent sequence-to-sequence models are mostly based on the pointer
network architecture of Vinyals et al. [145]. For example, some work em-
ploys recurrent neural networks to encode the sentence set S into a para-
graph vector, with a pointer network then predicting the correct sequence
S′ using attention to `point' to input sentences si [42, 91]. This approach
has been further developed with a hierarchy of recurrent attention-based
word and sentence encoders [147]. Another lines of work combine a pointer-
network approach with topic models [102], or employ graph RNNs creat-
ing graph representations based on entities shared between sentences [156].
More recently, the pointer-network approach has been further extended us-
ing Transformer-based (see Section 2.1.5) language models, for example
BERT [32], to obtain better paragraph representations [128].
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Chapter 4

Cognate Identi�cation in Sami

Languages

In this chapter, we examine the problem of identifying etymologically re-
lated words, cognates, within a set of endangered Sami languages of the
Uralic family. As stated earlier in Chapter 1, our aim in this chapter is to
address our research task RT-I:

RT-I. Given scarce language-speci�c labelled data, identify cognates in

truly low-resource Sami languages.

To accomplish RT-I, our approach is similarity learning, that is, to learn
a similarity metric from data that can predict the cognacy for a given
cross-lingual word pair. To do this, we propose two models: a support
vector machine (SVM), and a multi-input, Siamese convolutional neural
network (S-CNN). While the SVM has been a popular method for cognate
identi�cation [52, 117], neural networks represent a more recent develop-
ment [67, 118]. In contrast to much of earlier work relying on linguistic
resources [e.g. 136], we propose models that are language-independent in
order to promote easier scalability to new languages.

Our labelled target data consists of a small cognate set for North, South,
and Skolt Sami, which is insu�cient to train our models for similarity learn-
ing. Hence, our approach is to pre-train our models on language pairs of the
high-resource Indo-European family, and transfer these models to our Sami
set. That is, whereas most previous work addresses transfer between closely
related languages [e.g. 94], we consider a setting where they are highly unre-
lated. Since cognacy is driven by phonetic changes that are more universal
than languages in general (see background in Section 3.1), we hypothesise
that patterns in cognacy can carry over across language families.

37
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In this chapter, we conduct two experiments. First, in Section 4.3, our
aim is to test our similarity learning approach for cognate identi�cation, and
to �nd out whether pre-training on unrelated language data is bene�cial.
Second, in Section 4.4, we �ne-tune the neural model with a portion of
the Sami cognate set, to quantify the bene�t gained from having access to
small amounts of labelled Sami data, or conversely, the loss in performance
caused by lack of such data.

In the next section, we de�ne our problem setting more formally through
the transfer learning framework presented in Section 2.2. Then, in Sec-
tion 4.2 we present our methods in detail. In addition to our similarity
learning models, we present string metrics that we use as the SVM's fea-
tures, of which one we use as a baseline. In Sections 4.3�4.4, we present our
two experiments: the datasets used for training (or �ne-tuning) and testing,
our implementations, evaluation schemes, and results. Finally, we conclude
the chapter with a discussion on the �ndings.

4.1 Problem

In this chapter, our aim is to identify cognates within a truly low-resource
language group using data from a high-resourced language family. As dis-
cussed in Section 3.1, the term cognate has several uses in literature. Follow-
ing previous work [10, 13, 74], we regard any pair of etymologically related
words as cognates, regardless of the type of etymological relation.

Our datasets consist of etymological data for two, highly unrelated lan-
guage families, where one family contains several high-resourced languages
and the other extremely low-resource ones. These datasets contain positive
labels only (i.e. veri�ed cognate pairs). In our transfer learning setting,
these language families represent the source and target domains DS and
DT , where DS is the high-resourced Indo-European language family and
DT is the truly low-resource Sami language group of the Uralic language
family.

Following the de�nitions and notation of Ruder [123] (see Section 2.2),
we de�ne the source and target domains as pairs of feature spaces and
marginal distributions {

DS = {XS , PS(XS)}
DT = {XT , PT (XT )}

where XS ,XT are the source and target feature spaces and PS(XS), PT (XT )
their respective marginal distributions, where XS , XT are random vari-
ables associated with the word pair samples observed in source and target
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datasets. We de�ne the corresponding tasks as triples of label spaces, prior
and conditional distributions{

TS = {YS , PS(YS), PS(YS |XS)}
TT = {YT , PT (YT ), PT (YT |XT )},

where YS ,YT are the label spaces and PS(YS), PT (YT ) their respective
prior distributions, PS(YS |XS), PT (YT |XT ) are the conditional distributions
learned from data, and YS , YT are random variables.

In the setting of this chapter, the feature spaces XS and XT are all the
distinct cross-lingual pairings of words within the source and target language
families FS and FT , which represent the Indo-European and Uralic families.
That is, a feature space X is of the form

X = {(wLi , uLj ) ∈ [F ]2 | i ̸= j}

where L is a language, words w, u are strings over language-speci�c alpha-
bets ΣL, F is a language family, and [F ]2 denotes the set of all word pairs
within F . We de�ne language L as a set of words, and a family F as the
union of such language-speci�c word sets, that is

F = {L1 ∪ · · · ∪ LN} = {wL1
1 , . . . , wL1

n1
, wL2

1 , . . . , wL2
n2
, . . . , wLN

1 , . . . , wLN
nN
}

where ni = |Li| and N is the number of languages. While the families FS

and FT are distinct sets of languages, that is FS ∩ FT = ∅, their alphabet
sets ΣFS

and ΣFT
may overlap. In our case, these are the sets of Unicode

characters occurring in the words of each family. As noted in Section 3.1,
it is likely that there is more alphabet overlap within the families than
between them.

We formulate both the source and target tasks TS , TT as binary classi-
�cation. Thus, the label spaces are simply YS = YT = {0, 1}, one referring
to the positive class where two words are cognates. The source and target
datasets DS , DT are samples of cross-lingual word pairs from feature spaces
XS and XT associated with binary labels, although DT is only partially
labelled. That is, these datasets are of the form{

DS = {(xSi , ySi )}
NDS
i=1

DT = {(xTi , yTi )}
p
i=1 ∪ {xTi }

NDT
p+1

where xi = (xi1, xi2) ∈ X are the cross-lingual word pair samples, yi ∈ Y are
the associated binary labels, and NDS

, NDT
are the sizes of the datasets.

The source dataset DS is fully labelled such that ∀i ySi = 1, that is, it
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contains only positive samples of cognate pairs. The target dataset DT

contains a small amount p of labelled samples, again positive only, that is,
yTi = 1 when 1 ≤ i ≤ p. The rest of the samples in DT are unlabelled. Since
the samples of DS and DT come from their respective families FS and FT ,
it is extremely unlikely they would have any word pairs in common.

Referring to the transfer learning scenarios described in Section 2.2.2, we
are facing scenarios 4 and 5 [123]. That is, XS ̸= XT , since the word pairs ob-
served inDS andDT are very unlikely to overlap. Also, since there is no one-
to-one mapping between the samples, it must be that PS(XS) ̸= PT (XT ).
Thus, we regard our setting as a combination of domain adaptation and
cross-lingual learning (see background in Section 2.2), where we have a
small amount of labelled target data available.

Given these source and target datasets DS and DT , we want to identify
those word pairs xT = (xT1 , x

T
2 ) ∈ DT where xT1 and xT2 are cognate to each

other. As cognacy is di�cult to de�ne in terms of rules for computational
purposes, and as we are interested in language-independent methods not re-
lying on linguistic knowledge, we consider a data-driven approach appropri-
ate to this task. We formulate our task as the classi�cation of cross-lingual
word pairs into cognate and non-cognate pairs such that the prediction for
some word pair (xT1 , x

T
2 ) being cognate is ŷ

T = p(yT = 1 | (xT1 , xT2 )) ∈ [0, 1].
Since the input consists of word pairs and the output is between zero and
one, such a model can be considered to learn and predict the similarity (in
terms of cognacy) between any two words from di�erent languages.

Thus, our objective is to optimise for the parameters θ of the model
p(yT | (xT1 , xT2 ), θ) for the classi�cation of word pairs in the unlabelled
target data DT . Since only few labels are available for DT , while DS is
thoroughly labelled with positive examples only, our approach is to �rst
build a training dataset, pre-train the model on DS , and then �ne-tune the
model on a dataset built from the p labelled examples from DT . Since there
is practically no overlap between DS and DT with regard to their sample
word pairs, but there may be between their alphabet sets, our strategy is to
train a model for learning patterns between cross-lingual pairs of substrings,
contiguous sequences of characters.

4.2 Methods

In this section, we present three methods for cognate identi�cation: string
metrics, a support vector machine (SVM), and a Siamese convolutional
neural network (S-CNN). Each of these three methods represents a di�er-
ent approach to the problem, and especially the �rst two have been used
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extensively in previous work. String metrics are the algorithmic, more tra-
ditional tool of choice [12, 73], while SVM is a supervised learning model
found useful for the task [62, 136]. The S-CNN, in turn, represents a newer
line of work using neural networks, which have been successful in many
other NLP tasks [67, 118]. Whereas the following string metrics are di-
rectly from previous work, the SVM and S-CNN are our modi�cations of
similar models, omitting all language-speci�c features, following our premise
of language-independence.

4.2.1 String Metrics

We present three string metrics used in our experiments: Levenshtein-
distance similarity (LDsim), number of common bigrams (ncb), and pre�x
length (pref). LDsim is our baseline, while the other two metrics we use
as the SVM's features (see Section 4.2.2).

Although many other string similarity metrics exist, as discussed in
Section 3.1.2, we consider LDsim a suitable baseline as a straightforward
and general metric for string similarity. We also consider common bigrams
and pre�x length to be suitable metrics for cognate identi�cation, as we aim
to identify patterns between pairs of substrings, and since words sharing
their �rst letters are more likely to be cognate [136]. In addition, some
of the other common metrics (e.g. longest common subsequence, common
n-grams) have been found redundant to these three [52].

The Levenshtein distance [85], or edit distance, between strings s1 and
s2 over an alphabet Σ is the minimum number of insertion, deletion, or
substitution operations needed to transform one string to the other, as
explained earlier in Section 3.1.2. To obtain the normalised Levenshtein
distance, this number is divided by the length of the longer word, equal to
the maximum possible distance between s1 and s2. The similarity metric is
then de�ned as

LDsim = 1− dL(s1, s2)

max{|s1|, |s2|}
∈ [0, 1],

where dL(s1, s2) is the Levenshtein distance. For example, for cognate pairs
coupe�Kopf and pöytä�bord, the respective similarities are 1− 3

5 = 0.4 and
1 − 5

5 = 0. This method is most suitable when the alphabets are shared
between languages, since the similarity is always zero for disjoint alphabets.
(The same applies to our other string metrics as well.)

One of the metrics we use in our SVMmodel is the normalised number of
common bigrams between strings s1 and s2, which we refer to as ncb(s1, s2).
A bigram of a string s is any two adjacent elements within s, in other words
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any of its substrings of length two. For example, if s1 = huvittava and s2 =
huvitav, their bigram sets are B(s1) = {hu, uv, vi, it, tt, ta, av, va} and
B(s2) = {hu, uv, vi, it, ta, av}, and their normalised number of common
bigrams is

ncb(s1, s2) =
|B(s1) ∩B(s2)|

max{|B(s1)|, |B(s2)|}
=

|B(huvittava) ∩B(huvitav)|
max{|B(huvittava)|, |B(huvitav)|}

=
6

8
= 0.75.

The third metric, the length of the longest common pre�x between s1
and s2, is simply the length of the longest common substring starting from
the �rst characters of s1 and s2. For example, for strings s1 = notte and
s2 = noche this value is 2. To obtain a normalised value, we divide this
value by the length of the shorter word, so that a value of one means the
shorter word is a pre�x of the other word and zero that the words have no
common pre�x. We refer to this metric as pref(s1, s2).

4.2.2 Support Vector Machine

Our SVM model (see Section 3.1.3) uses word similarity metrics as features
for word pairs. The features we use are LDsim, ncb, pref, normalised
lengths of both words, and the normalised absolute di�erence between the
lengths. That is, we represent a word (string) pair (s1, s2) as a feature
vector x ∈ R6 such that

� x1 = LDsim(s1, s2),

� x2 = ncb(s1, s2),

� x3 = pref(s1, s2),

� x4 =
|s1|

max{|s1|,|s2|} ,

� x5 =
|s2|

max{|s1|,|s2|} , and

� x6 =
||s1|−|s2||

max{|s1|,|s2|} = |x4−x5|
max{|s1|,|s2|} .

These features are similar to those of Hauer and Kondrak [52], but in con-
trast to their work we use normalised values and LDsim instead of the
Levenshtein distance, and omit their language-pair features. Otherwise, we
use the same metrics apart from LDsim, since they have been found to
produce good results [52].

We opt to use LDsim instead of absolute Levenshtein distance, as its
values are normalised to the same scale as the other features, which should
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be better for SVM performance. We use normalised values of all features
in order to diminish the e�ect of word length on classi�cation, as we do not
want the model to disregard cognates with greater length. We normalise the
values by dividing them with the length of the longer word, except for pref,
which divides with the length of the shorter word. We omit the language-
pair features as they are not applicable to our language-independent setting.
We do not use any phonetic similarity metrics, as our datasets contain or-
thographic forms only. It is also more likely the case with truly low-resource
languages that more data is available in orthographic than in phonetic form.

We have chosen this SVM model as it is based on such string similarity
measures that are applicable to our low-resource scenario. More advanced
SVM-based approaches to cognate identi�cation exist, but they either re-
quire detailed dictionary de�nitions in a high-resource language with high-
quality pre-trained word embeddings [136], or multilingual wordlists aligned
by concepts [62], which we do not have.

4.2.3 Siamese Convolutional Neural Network

As our neural method for cognate identi�cation, we use a Siamese convo-
lutional neural network (S-CNN, see Section 2.1.4). A similar model was
�rst used for cognate identi�cation by [118], modifying the original Siamese
network developed for the task of face veri�cation [26]. Our implementation
is similar, although we omit their language features and phonetic represen-
tations for the same reasons as with the SVM. The architecture we use is
illustrated by Figure 4.1.

Since the CNN requires a grid-like representation of the input (see
Section 2.1.3), we represent a word as a matrix X ∈ {0, 1}|Σ|×n such
that X = [x1x2 . . .xn], where each column vector xi ∈ {0, 1}|Σ| is a one-
hot vector representing a character in the alphabet Σ. The training data
D = {(Xai,Xbi), yi}Ni=1 then consists of pairs of words such that yi = 1 if
Xai and Xbi are cognates, and yi = 0 otherwise.

As shown in Figure 4.1, the S-CNN model is an extension of the CNN:
�rst, a set of �lters W ∈ Rp×q are convolved (cross-correlated) over char-
acter sequences of a pre-determined length q from both input matrices Xa

and Xb, each �lter producing a feature map for each input. That is, one
�lter is applied to both inputs, meaning that the weights are tied and the
two CNNs are identical functions mapping similar words close to each other
in the representation space. Siamese networks have been found to achieve
better performance with tied weights [72].

To the feature maps, we then apply a recti�ed linear unit (ReLU) ac-
tivation function and max-pooling. The number of feature maps produced
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Xa Xb

Xa ⋆W Xb ⋆W

Max-pooling Max-pooling

Fully-connected layer with dropout

ŷ

rbra

m = |ra − rb|

ReLU ReLU

Figure 4.1: Architecture of the S-CNN. Column vectors in input matrices
represent one-hot-encoded characters. The same �lter W is convolved with
both inputs, i.e. the weights are tied.

from each input matrix is equal to the number of �lters. We �x the �lter
height at p = |Σ|, equal to the size of the alphabet and the height of the
input matrix, resulting in vector-formed feature maps. We choose to use
the ReLU activation and max-pooling, as they have been found e�ective in
CNNs for NLP [70, 118].

We obtain the representation vectors ra and rb by concatenating all the
feature map vectors into single vectors. These two vectors are then merged
into one vector m using some distance metric. We use the absolute vector
di�erence [118] such that m = |ra − rb| = [|ra1 − rb1|, . . . , |ral − rbl|]T ,
where l = |ra| = |rb|. Finally, the merged vector m is fed as input to a
fully-connected layer, itself connected to the output neuron. The dropout
technique [135] is applied to the fully-connected layer for regularisation,
and the output neuron is activated with the sigmoid function to produce
a prediction ŷ ∈ [0, 1]. The output of a trained model can be regarded as
a learned similarity metric between pairs of inputs, although it does not
satisfy the triangle inequality as true metrics do.

4.3 Indo-European Models for Sami Cognates

In this section, we present our �rst experiment, where we train the SVM and
S-CNN models on Indo-European data and directly apply them to cognate
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identi�cation between North, South, and Skolt Sami of the Uralic language
family. As our baseline we use LDsim, which as a string metric requires
no training. Next, we describe our datasets, implementation, evaluation
metrics, and results.

4.3.1 Datasets

In order to train the SVM and S-CNN models, we build a training dataset
from the Etymological WordNet [39]. This is a database containing infor-
mation of etymological origin, cognacy, as well as derivational and compo-
sitional links between words (see Section 3.1.1 for de�nitions). It consists
of word pairs that each belong to one of the aforementioned relations. The
database has been mined from Wiktionary, and its entries are mostly from
widely spoken Indo-European languages, such as English, German, French,
and so on, but also from historical languages such as Latin and Old English.

To build our training dataset, we include all etymologically related word
pairs where the two words either share a common root or one word is the
root of the other. We disregard all derivationally or compositionally linked
word pairs, as such links are not relevant to cognacy. Furthermore, we �lter
out those pairs where both words belong to the same language, as we are
concerned with identifying cognates across languages. In total, there are
73,238 cognate pairs in the �ltered training set.

As our models are binary classi�ers, our training dataset requires also
negative examples of non-cognate word pairs. Thus, we build the training
dataset from the cognate set by pairing unrelated words randomly, so that
10% of the pairs are cognate. We consider this a suitable ratio, as only a
tiny amount of word pairs out of all possible pairs between two languages
are cognate, depending on the relatedness of the languages. On the one
hand, the more balanced the classes are, the more false positives will be
predicted by the models, but on the other hand, a too small portion of
cognate pairs could result in more false negatives and the models not learn-
ing anything about cognacy. While our chosen proportion is unrealistically
high, we regard the cost of misclassifying cognates as unrelated (false nega-
tives) higher than that of misclassifying unrelated words as cognates (false
positives). We refer to our Indo-European training set as IE-Train.

To test our models, we use a set of three vocabularies from North,
South, and Skolt Sami of the Uralic language family. We retrieved these
vocabularies from dictionaries compiled by Giellatekno1. In order to build
our test dataset, we �ltered out all words with upper-case (proper nouns)

1The research group of Sami language technology at the University of Tromssa. http:
//giellatekno.uit.no/index.eng.html.

http://giellatekno.uit.no/index.eng.html.
http://giellatekno.uit.no/index.eng.html.
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Family Dataset #pairs #cognates |Σ|

Indo-
European

IE-Train 732,380 (73,238) 329

Uralic Sami-Full


sma�sme 11,234 × 47,312 (1,460) 42 (27)
sma�sms 11,234 × 29,401 (838) 75 (27)
sme�sms 47,312 × 29,401 (2,188) 77 (38)

Table 4.1: Our Indo-European and Sami datasets used for pre-training and
testing, respectively. Languages contained in Sami-Full are South Sami
(sma), North Sami (sme), and Skolt Sami (sms). |Σ| is the alphabet size, i.e.
total number of symbols observed in a dataset, the number of overlapping
characters given in parentheses for the language pairs of Sami-Full.

or non-alphabetic characters, and obtained gold-standard cognate sets for
these languages from Álgu2, an etymological database for Sami languages.
This database contains (positive-only) cognate information for only a subset
of all the words in the vocabularies, meaning that our test dataset is only
partially labelled and for positive examples only. That is, some of the
unlabelled word pairs might in fact be cognate, although the vast majority of
them are unrelated. We refer to our test dataset as Sami-Full and average
results over the three pairs of languages. Statistics for both IE-Train and
Sami-Full are shown in Table 4.1, including the number of cognates and
total word pairs, and alphabet sizes. Despite relatively close relatedness
between the languages of Sami-Full, we note that the alphabets of the
three Sami languages are not very overlapping, which makes the cognate
identi�cation task more di�cult.

4.3.2 Implementation

In our implementation of the S-CNN model, we use ten �lters with height
p = |Σ| (alphabet size) and width q = 2. The alphabet is the set of all
characters observed in both the training and test datasets, and its size is
|Σ| = 336. We �x the input matrix width to n = 20. For words shorter than
this, the input matrices are zero-padded, and longer words are truncated at
this length. In the fully-connected layer, we use a dropout rate of 0.5.

We train the S-CNN model using binary cross-entropy as the loss func-
tion, and the Adadelta optimizer [157] with initial learning rate α = 1.0,
decay rate ρ = 0.95, and the constant ϵ = 1 · 10−6. The batch size is set
to 128, and number of epochs to 50. We implemented the model using the

2Available at: http://kaino.kotus.fi/algu/

http://kaino.kotus.fi/algu/
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Keras library with Tensor�ow backend [25]. For the SVM implementation,
we use the SVM module of the Scikit-learn library for Python [105], based
on the C-support vector classi�cation implementation of [20]. We train the
model using a linear kernel and regularisation parameter C = 1. The model
uses Platt scaling [112] to make probabilistic predictions.

4.3.3 Evaluation

A di�culty in evaluating on the Sami datasets is that the set of word pairs
annotated as cognates in the Álgu database is known to be far from complete
for the vocabularies covered. As a result, there are many word pairs in the
vocabularies that are cognates, but are evaluated as unrelated. Measures
such as accuracy and precision are therefore not useful for this experiment,
since we do not know whether a given word pair not among the annotated
cognates is a cognate pair. We can, however, evaluate the recall of the
known cognate pairs: what proportion of the annotated pairs make it into
the set ranked as most likely cognates by the models.

We avoid the use of precision in order not to diminish the meaning of the
results in any way. Furthermore, since the focus of this experiment is on the
identi�cation of cognates, we are more interested in recall than precision.
However, in our second experiment we make the assumption that all word
pairs except the known cognates are indeed unrelated, which is true for
most word pairs in Sami-Full. This allows us to compute precision, and
to compare models more in terms of their performance at the task, and not
only whether they can identify cognates.

Applying our models to all pairs of words between two vocabularies
is time consuming. Therefore, when evaluating on the language pairs of
Sami-Full (see Table 4.1), we take from one vocabulary A only those
words CAB ⊂ A that we know to have at least one cognate in the other
vocabulary B. Then, for each word c ∈ CAB, we use our models to make a
prediction on each word pair (c, b) where c ∈ CAB and b ∈ B.

As the models' predictions are values between zero and one, we can rank
the words b ∈ B according to the likelihood of being cognate to c ∈ CAB.
We can then compute the recall for a set of top k results averaged over both
the words c and the set of language pairs (including inversions, i.e. each
pair is counted twice). We refer to this metric as the mean average recall@k

(MAR@k), which we compute as

MAR@k =
1

|L|
∑

(A,B) ∈ L

1

|CAB|
∑

c ∈ CAB

R@k(c),
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where R@k(c) =
|{b ∈ B | rank(b) ≤ k and b is cognate with c}|

|CBA|

where L is the set of language pairs including inversions (i.e. six pairs for
the three languages in Sami-Full), and CAB is the set of words in language
A that have cognates in language B. That is, for each word c ∈ CAB in a
vocabulary A and words b in vocabulary B, we obtain the top k ranking
words b ∈ B, count how many of them are cognates to c and divide this
value by the total amount of cognates for c in B. (For most words c, there
is only one, and for some there are several cognates in B.) We then take the
average of this value over CAB, compute the corresponding value for other
language pairs, and again take the average over language pairs.

4.3.4 Results

Having trained the S-CNN and SVM models on IE-Train, we run them
and our baseline LDsim on the Sami language pairs in dataset Sami-Full
and compute the MAR@k values for k = 1, . . . , 100. The resulting curves
are shown in Figure 4.2.

We observe that all of the curves are logarithmic in shape. The S-CNN
scores highest for all values of k, while LDsim scores lowest, and the SVM is
approximately in the middle between the other two methods. The S-CNN
and SVM curves rise quite steeply for k ≤ 20, whereafter the rise is steady
until k = 100. For LDsim, the rise is steeper only for very low values of k.

A steep rise in the MAR@k curve means that when k (i.e. the size of
the retrieval set) increases, the occurrence of cognates within the �rst k
predictions increases more signi�cantly. The rise is naturally steeper for
small values of k, as k increases faster in proportion to its value. With the
steepest initial rise, S-CNN is most e�ective at ranking the correct cognates
within the �rst k candidates.

Since the S-CNN outperforms the other approaches by a substantial
margin across values of k, it seems that the neural network is able to capture
aspects of the cognacy relation that transfer across language families more
e�ectively than the hand-designed features of SVM or the similarity metric
LDsim. SVM also outperforms LDsim, which is unsurprising, since LDsim
is included among its features. Since the S-CNN performs best at cognate
identi�cation when trained only on Indo-European data, we use it in our
second experiment, where we �ne-tune the model on a small set of Sami
cognates.
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sim

Figure 4.2: MAR@k for k = 1 . . . 100, for Sami-Full, for S-CNN and
SVM trained on IE-Train. (The baseline, LDsim, requires no training.)
Each curve is the average over all pairs of Sami languages.

4.4 Fine-Tuning on Sami Languages

In our �rst experiment in Section 4.3, our Siamese neural network model
(S-CNN) performed best at direct transfer from Indo-European to Sami
languages. Next, in our second experiment, we �ne-tune S-CNN on a small
set of Sami cognates in order to quantify the value of some labelled target-
language data. We refer to this �ne-tuned model as S-CNN-FT. We also
analyse how the performance of S-CNN-FT improves with the amount of
cognate pairs used for �ne-tuning. In the following subsections, we describe
the datasets, implementation, evaluation, and results of this experiment.

4.4.1 Datasets

We construct small-scale training and test sets from Sami-Full using the
etymological database Álgu to include known cognate pairs in the sets.
Table 4.2 shows the amounts of cognate and total word pairs in the �ne-
tuning and test sets, which we refer to as Sami-FT and Sami-FT-Test.
In these datasets, the proportion of cognate pairs is approximately 1%,
which we consider suitable for the same reasons as in sampling IE-Train,
explained earlier in Section 4.3.1.
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Dataset # cognate # all pairs

Sami-FT 986 100,000
Sami-FT-Test 3,500 350,000

Table 4.2: The small-scale datasets sampled from Sami-Full described in
Section 4.3.1. We use Sami-FT to �ne-tune the S-CNN pre-trained in the
�rst experiment and test the �ne-tuned model on Sami-FT-Test.

We generate negative (non-cognate) samples for both sets by taking
random pairs from each language pair in Sami-Full, and checking that
none of them is a known cognate pair. As explained in Section 4.3.1, due
to the incompleteness of Álgu we cannot know with certainty that none of
these random sample pairs would be cognate. However, for this experiment
we decide to generate them in this way, since the vast majority of such pairs
can be expected to be unrelated. That is, the results should still reliably
indicate whether �ne-tuning can improve performance and to what extent.

4.4.2 Implementation

When �ne-tuning S-CNN pre-trained on IE-Train, the model's architec-
ture is the same as described in Section 4.3.2. We do not freeze any layers
for �ne-tuning, but allow all weights to be updated. The hyperparameters
we keep the same except for batch size (32) and number of epochs (20).
The other methods (untuned S-CNN, SVM, LDsim) are the same as in
the �rst experiment. The untuned S-CNN and SVM have been trained
only on IE-Train.

4.4.3 Evaluation

In this second experiment, as mentioned in Section 4.4.1, we assume that
only the known cognate pairs are truly cognates, and all other pairs are
negative examples. This assumption allows us to use precision as an evalu-
ation metric, which we posit is indicative of the impact of �ne-tuning and
tells us something additional about the methods' performance.

In order to evaluate our models at ranking the word pairs of Sami-FT-
Test according to cognacy, we compute a precision-recall (PR) curve for
each method. We consider this a suitable evaluation method as the classes
are very imbalanced, and PR curves can indicate which methods are better
than others at giving higher predictions to known Sami cognate pairs. The
PR curve is created by calculating precision and recall at di�erent proba-
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Figure 4.3: The learning curve of S-CNN �ne-tuning on Sami-FT in terms
of average precision.

bility thresholds for predicting the positive class. Given a set of predictions
in descending order of probability, we do this by computing the cumulative
number of true and false positives for each threshold. (There are as many
thresholds as there are unique predictions.) We summarise these curves
with single values using average precision (AP) such that

AP =
∑
n

(Rn −Rn−1)Pn

where Rn and Pn are the recall and precision at threshold n. That is, AP
is the weighted mean of the precisions computed at each threshold, where
the increases in recall are the weights. It is also equal to the area under the
PR curve.

In addition to PR curves, we also compute the learning curve for the �ne-
tuned model (S-CNN-FT), by plotting the AP values for di�erent amounts
of cognate pairs from Sami-FT used for �ne-tuning. Thus, we can estimate
how much �ne-tuning data S-CNN-FT requires to achieve the performance
illustrated by the model's PR curve.

4.4.4 Results

Figure 4.3 shows the learning curve of S-CNN-FT under �ne-tuning. We
observe that AP values increase together with the number of Sami cognates
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sim

Figure 4.4: The PR curves for methods tested on Sami-FT-Test. All
models are pre-trained on IE-Train, and S-CNN-FT is further �ne-tuned
on Sami-FT. (LDsim baseline requires no training.) Average precisions:
82.5% (S-CNN-FT), 74.1% (S-CNN), 60.8% (SVM), and 54.0% (LDsim).

used to �ne-tune the model, as expected. The improvement converges with
about 500 cognate pairs, which implies that only a few hundred cognate
pairs can be enough for maximal performance given a model pre-trained
on an unrelated language family. Of course, in extremely low-resource sce-
narios, the available labelled data is often scarcer. However, the learning
curve indicates that even smaller amounts (< 200) can result in noticeable
improvements.

The PR curves for S-CNN-FT, unadapted S-CNN and SVM, as well as
the LDsim baseline, are shown in Figure 4.4. In this case, S-CNN-FT has
been �ne-tuned with 500 cognate pairs, where the �ne-tuning converges, as
shown by the learning curve. Looking at these curves, and considering their
respective AP values, we see that S-CNN-FT (AP = 82.5%) outperforms
the unadapted S-CNN (AP = 74.1%) with a substantial margin. Otherwise,
the results re�ect those of the �rst experiment: S-CNN outperforms SVM
and LDsim with a clear margin, and SVM is better than LDsim. However,
the di�erence between SVM (AP = 60.8%) and LDsim (54.0%) is smaller,
and for lower levels of recall (R < 0.4), LDsim obtains higher precision than
SVM. As the precision of LDsim decreases faster for higher levels of recall,
its overall AP score is still lower.
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4.5 Conclusion

In this chapter, we have addressed the �rst research task of this thesis, RT-I:

RT-I. Given scarce language-speci�c labelled data, identify cognates in

truly low-resource Sami languages.

Our �rst low-resource scenario has consisted of having a small cognate set for
endangered South, North, and Skolt Sami of the Uralic language family, as
our labelled target dataset. Being insu�cient for direct supervised training,
we have proposed a transfer learning approach based on pre-training models
on data from other languages. Lacking high-resource close relatives, we
chose the highly unrelated Indo-European language family as our source
language set.

For cognate identi�cation, we have proposed two models of similarity
learning: a support vector machine (SVM) with string-metric features, and
a Siamese convolutional neural network (S-CNN), transferring both of these
from Indo-European to Sami. In our �rst experiment, we trained both mod-
els on Indo-European etymological data only, and applied them directly to
identify cognates within the Sami language set. Our results showed that
S-CNN, reaching highest recall, outperforms both the SVM and our base-
line, LDsim. This indicates that the S-CNN more e�ectively generalises
across language families, suggesting that it can learn patterns of cognacy
that carry over across these two families.

Following this result, in order to utilise the small cognate set to adapt
the pre-trained S-CNN to Sami, our approach is to �ne-tune the model on
this data. Analysing the model's ability to adapt, we found that already
with 200 cognate pairs, �ne-tuning resulted in a noticeable performance
improvement. The model's learning curve converged at approximately 500
�ne-tuning pairs. Using this amount, we compared its performance at clas-
sifying Sami cognates with the unadapted S-CNN and SVMmodels, as well
as the LDsim baseline. The �ne-tuned model was superior to its unadapted
variant, and substantially so in comparison with SVM and LDsim.

Although neural networks have been applied relatively little to cognate
identi�cation, our results imply that as in many other NLP contexts, they
provide promising solutions to the task, and potentially for historical lin-
guistics in general. Since the convolutional neural network seems to capture
such sound correspondences (predictive of cognacy) that carry over from
Indo-European to Uralic languages, the method could possibly be useful
for identifying even more universal patterns, which might be of interest for
linguists. Additional bene�ts include providing a fast method to generate
initial hypotheses regarding language relatedness and phylogenetic trees.
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In terms of future work, varying the sets of source and target languages
used for pre-training and testing could be a way to investigate more uni-
versal patterns of cognacy. Another research avenue is to combine this
model with linguistic expertise and rule-based methods, for example using
phonetically encoded inputs to mitigate the disparity between orthographic
alphabets, probably resulting in sub-optimal performance for our models.
Another limitation is that with regard to �ne-tuning, even as few as 200 pos-
itive samples might not be available for many truly low-resource languages.
In Chapter 5, we address exactly this issue and examine unsupervised adap-
tation.

From the results of this chapter, we conclude that we have developed a
method for cognate identi�cation in a truly low-resource-language scenario,
using transfer learning in combination with a neural similarity learning
model. Our results support our hypothesis that neural models are suit-
able for low-level NLP tasks in truly low-resource languages, when lever-
aged with transfer learning. Since our proposed approach does not require
language-speci�c expertise, it is more scalable to new low-resource-language
scenarios. In addition, it provides potential bene�ts for historical linguistics.
Given that cognate information is useful for cross-lingual transfer learning,
our work in this chapter supports the general extension of basic NLP tools
into truly low-resource languages, in accordance with the objective of this
thesis.



Chapter 5

Unsupervised Adaptation to Uralic

Languages

In this chapter, we address cognate identi�cation in endangered Sami and
Finnic languages of the Uralic language family. Although this task is essen-
tially the same as in Chapter 4, we examine a scenario where no labelled
target-language data is available for �ne-tuning. That is, we address our
second research task, RT-II:

RT-II. Given only unlabelled data, adapt a pre-trained cognate

identi�cation model to truly low-resource Uralic languages.

To accomplish RT-II, we investigate unsupervised methods of both domain

adaptation (Section 2.2.4) and cross-lingual adaptation (Section 2.2.5), not
relying on any labelled target data. Unsupervised methods are of special
interest to truly low-resource languages, for which labelled data might be
extremely scarce. Since even unlabelled data might be lacking in such lan-
guages, we focus on methods that require only moderate amounts of such
data.

In this chapter, we investigate two unsupervised representation-based
approaches to adapt our neural cognate identi�cation model, S-CNN, from
Indo-European to Uralic data. Our aim is to make source and target data
distributions more similar by changing the underlying data representations,
at two di�erent levels. Then, a model trained on source data can be directly
applied to target data, without a drop in performance associated with direct
transfer of an unadapted model.

First, we consider domain-adversarial networks, a method of unsuper-
vised domain adaptation based on latent feature learning. (See background
in Sections 2.2.4 and 2.3.3.) We attempt to make S-CNN's latent word
pair representations more similar to each other across source and target
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languages, by making target representations indistinguishable from source
representations for a domain discriminator.

Second, we examine pre-trained cross-lingual symbol embeddings. These
embeddings map language-speci�c symbols into a common, lower-dimen-
sional vector space. This creates a new input encoding for S-CNN, mak-
ing the alphabets of source and target languages more comparable for the
model, especially if orthographies are di�erent and alphabets do not over-
lap. Although embeddings of words are more prominent in NLP, we consider
symbol embeddings more appropriate for our truly low-resource scenario.
This is due to cognacy being determined by symbol and substring correspon-
dences (see Section 3.1 for background), smaller training data requirements,
and suitability for morphologically-rich languages, such as our Uralic target
languages.

5.1 Problem

In this chapter, our problem setting is essentially the same as in Chapter 4.
The Indo-European and Uralic language families again represent our source
and target domains DS and DT . Likewise, we address the same task T ,
cognate identi�cation as binary classi�cation of word pairs. This task is the
same in both source and target settings, TS = TT = T . (See Section 4.1 for
detailed descriptions of these domains and tasks.)

As in Chapter 4, source and target languages and marginal data distribu-
tions are di�erent, implying that we face disparate feature spaces, XS ̸= XT ,
marginal data distributions, PS(XS) ̸= PT (XT ), as well as conditional dis-
tributions, PS(XS |YS) ̸= PT (XT |YT ). Thus, we observe transfer learning
conditions 1, 2, and 5 (see Section 2.2.2), and our transfer learning prob-
lem is a combination of domain adaptation and cross-lingual adaptation,
similarly to Chapter 4. However, the adaptation problem is now more chal-
lenging, due to our assumption that our target dataset DT is completely
unlabelled, and thus our source and target datasets are now{

DS = {(xSi , ySi )}
NDS
i=1

DT = {xTi }
NDT
i=1

where NDS
and NDT

are the sizes of these datasets. Since no labelled
target data is available, direct supervision is not possible. That is, instead
of �ne-tuning a pre-trained model with a small amount of labelled data
from DT , we will represent the data so that both the distributions PS(XS)
and PT (XT ) and feature spaces XS and XT become more similar to each
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other. Then, we can apply a model trained on DS to classi�cation of data
in DT .

5.2 Adversarial Adaptation to Sami Languages

Our �rst approach to unsupervised adaptation is to use discriminative ad-

versarial networks, a method of latent feature learning. With this method,
we aim to adapt the word pair representations of our cognate identi�ca-
tion model, S-CNN, by mapping source and target word pairs closer to
each other in a common representation space. We should learn such map-
pings GS(xS) and GT (xT ) that map input word pairs x = (x1, x2) into
d-dimensional latent features z ∈ Rd, such that the feature distributions

PS(zS) = {GS(xS) | xS ∼ PS(XS)}

PT (zT ) = {GT (xT ) | xT ∼ PT (XT )}

would be similar to each other, that is PS(zS) ≈ PT (zT ), despite that
PS(XS) ̸= PT (XT ). We consider the S-CNN's merged word pair represen-
tations the latent features z, and the mapping G as the part of the network
encoding input word pairs into these representations. Next, in addition
to the method, we present the setup and results of our experiments with
adapting S-CNN from Indo-European to Sami data.

5.2.1 Discriminative Adversarial Networks

Our unsupervised adaptation method based on discriminative adversarial
networks is illustrated in Figure 5.1. The method involves four models:
source encoder ES , target encoder ET , classi�er C, and discriminator D.
While ES and ET encode source and target word pairs respectively into
representations, C and D classify these representations into binary classes:
C in terms of cognacy, and D in terms of domain label (source or target).
This method is similar to the one used by Tzeng et al. [142] for image
classi�cation.

Before training, we split S-CNN into two separate models: an encoder
E and a classi�er C. The encoder's input consists of word pairs (w1, w2),
represented with matrices (X1,X2) where X is a matrix with one-hot col-
umn vectors representing a word's characters. As shown in Figure 4.1, each
matrix is fed into a convolutonal layer with ReLU activation and max-
pooling, resulting in a vector representation r. The pair (r1, r2) is then
merged into one h-dimensional latent representation z ∈ Rh using a bilinear
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(1) (2) (3)

s1 s2 s1 s2 t1 t2 t1 t2

ES ES ET ET

C CD

ĉ d̂ ĉ

Figure 5.1: Our adversarial adaptation procedure consists of three stages:
(1) pre-training source encoder ES and classi�er C with source word
pairs (s1, s2), (2) adversarial training of the target encoder ET and discrim-
inator D, and (3) combining ET with C in order to classify target domain
word pair samples (t1, t2). Dashed borders indicate models in training.

transformation such that

z = r1Wmr2 + b

whereWm ∈ Rh×|r|×|r| is a weight tensor and b is the bias term of the merge
layer. (We found a bilinear transformation resulted in better classi�cation
results than the absolute vector di�erence used in the previous chapter.)
This latent word pair representation z is the output of the encoder and the
input of the classi�er and the discriminator.

Both the classi�er C and discriminator D consist of fully-connected
layers with ReLU activations. To the classi�er's last fully-connected layer
we also apply dropout as in the previous chapter. The output layer of both
models contains two neurons for two classes, activated with the log-softmax
function and producing predictions yi ∈ [0, 1] for each class i. While the
classi�er predicts whether two words are cognate or not, the discriminator
predicts whether z is from source distribution PS(zS) or target distribution
PT (zT) of the representation space.

Before adversarial training, we pre-train the source encoder ES and
classi�er C together on our source domain dataset (IE-Train), in the same
way we trained S-CNN in the previous chapter. Then, we initialise the
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target encoder ET with the weights of ES . (The weights of ES are kept
�xed during adversarial training, the second stage in Figure 5.1). We train
the discriminator D and ET adversarially so that while D is learning to
distinguish between the source and target representations zS and zT , the
weights of ET are updated towards the opposite direction. This makes it
more di�cult for the discriminator to classify target representations zT , and
ideally they would shift closer to source representations zS .

To summarise, our adversarial training consists of the following steps:

(1) Obtain representations zS and zT from encoders ES and ET ,

(2) Compute the predictions D(zS), D(zT ) and update the weights of
discriminator D,

(3) Invert domain labels of target representations zT , and

(4) Update the weights of encoder ET based on recomputed discriminator
loss.

Finally, as illustrated by Figure 5.1, the adapted target encoder ET can be
combined with the pre-trained classi�er C in order to classify target domain
data.

5.2.2 Datasets

We train the source encoder ES and classi�er C on IE-Train. For testing,
we construct a dataset of 100,000 word pairs, consisting of 3,986 known
cognate pairs from Álgu (see Section 4.3.1), and randomly paired negative
samples from Sami-Full. These randomly paired samples provide the data
for adversarial training of target encoder ET and discriminator D. We
sampled all word pairs from the three Sami languages (South Sami, North
Sami, Skolt Sami) in proportion to their respective vocabulary sizes (see
Table 4.1).

5.2.3 Implementation

Although we split the S-CNN in two parts, an encoder and a classi�er,
the architecture in both parts is the same as in Chapter 4, apart from the
encoder's merge function. The encoder inputs are of the same form, as we
continue to use one-hot-encoded character vectors. The height of an input
matrix is h = |Σ| = 336, which is the size of the combined alphabet set of
IE-Train and Sami-Full. Again, we �x the width to n = 20 characters,
zero-padding shorter words while truncating longer ones.
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In the convolutional layer, we use ten �lters with height p = |Σ| and
width q = 2, and max-pooling with pool size 1 × 2. We set the dimension
of the merged vector m (i.e. the size of the bilinear layer) to 100. In the
classi�er, we use one fully-connected layer with 100 neurons with a dropout
rate of 0.5, while the discriminator has two fully-connected layers, also of
size 100, without dropout.

We train the source encoder and the classi�er on IE-Train using cross-
entropy loss for C = 2 classes and the Adam optimiser [71] with learning
rate α = 0.0001 and parameters β1 = 0.5 and β2 = 0.9. We set the batch
size and number of epochs at 64 and 10 for training the source encoder
and classi�er, while we used batch size 8 and 1000 iterations for the ad-
versarial training of the target encoder. We chose the training parameters
for training the source encoder and classi�er based on cross-validation with
�ve folds, while for adaptation we used the same learning rate and opti-
miser parameters as Tzeng et al. [142]. We implemented the models with
the PyTorch library [104].

5.2.4 Evaluation

We evaluate and compare two di�erent encoder�classi�er combinations:
source and target encoders ES and ET combined with the same classi-
�er C. As in the previous chapter, we use precision�recall curves in order
to evaluate the models' performance.

5.2.5 Results

Figure 5.2 shows the precision�recall curves for the unadapted (pre-trained
only) and adapted models. Combined with the classi�er C trained only on
source data, the adapted target encoder ET achieves a clearly larger area
under the curve than source encoder ES . In terms of average precision
(AP), the adaptation is able to improve the score from 58.8% to 70.8%.
This suggests that discriminative adversarial networks are able to make the
initially disparate Sami and Indo-European representations more similar to
each other, resulting in an easier task for the pre-trained classi�er C.

5.3 Cross-Lingual Adaptation to Finnic Languages

In this section, we present our second approach to unsupervised adaptation:
pre-trained cross-lingual symbol embeddings. These embeddings provide
a common representation space for the symbols observed in source and
target datasets, making them comparable across languages and providing
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Figure 5.2: Precision�recall curves for unadapted source encoder ES and
adapted target encoder ET , both combined with the same classi�er C.

a new input encoding for our cognate identi�cation model, S-CNN. After
describing these embeddings, we present our experiments with transferring
S-CNN from Indo-European to a set of Finnic languages of the Uralic
family.

5.3.1 Cross-Lingual Symbol Embeddings

Based on the principle that words occuring in similar contexts are more
likely to have similar meanings, word embeddings have been very successful
at capturing semantic relationships between words. However, cognacy is
determined by cross-lingual relationships between sub-words and individual
characters, as explained earlier in Section 3.1.

Granroth-Wilding and Toivonen [44] found that, in the same way as
word embeddings capture word meaning based on co-occurrence, symbol
embeddings can capture meaningful co-occurrence of characters and sub-
words within a language. In addition, mapped into a common vector space,
cross-lingual symbol embeddings for a language pair may indicate characters
that are similarly used within both languages. Such cross-lingual character
pairs would probably mark regular sound correspondences, indicative of
etymological relatedness (see Section 3.1 for background).

As our second approach to unsupervised adaptation from Indo-European
to Uralic languages, we propose to replace the one-hot-encoded inputs of
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Figure 5.3: The Xsym model [44]. In this example, the word pohjan is
separated into two trigrams (L-ngram, R-ngram) fed to the left and right
parts of the network. Through fully-connected layers, the trigrams are
composed into representations L-vec and R-vec, the concatenations of which
is predicted as either a real or a fake language sequence.

the S-CNN model with dense cross-lingual symbol embeddings trained with
Xsym, an unsupervised representation learning method [44]. As illustrated
by Figure 5.3, Xsym is a feedforward neural network, which takes a short
sequence of characters as its input, composes the left and right parts of the
sequence into representations, concatenates these, and predicts whether or
not the sequence is real language or not.

Xsym is trained alternately with text from two corpora in di�erent
languages, using a sliding window over the text. For each text sample, a
corresponding negative sample is a random text sequence (fake language).
In addition to individual characters, the input sequence length is varied to
include also character bi-grams and tri-grams, as in Figure 5.3. All charac-
ters and n-grams are speci�c to one language, that is, the letter a of Finnish
is considered distinct from the letter a of Estonian. Although the neural
network's input consists of only one language at a time, by limiting the neu-
ral network's capacity, the model is forced to share information between the
languages at the embedings level. This enables learning cross-lingual rela-
tionships between characters in an unsupervised way. We use the resulting
embeddings directly as inputs to our S-CNN cognate classi�cation model.
We refer the reader to the paper of Granroth-Wilding and Toivonen [44] for
further details about the Xsym model.
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Training Testing

Dataset #pairs (#cognates) #pairs (#cognates)

es�pt 326,040 (32,641) 81,510 (8,114)
da�sv 78,264 (7,896) 19,566 (1,887)
fi�et 2,240 (229) 560 (51)
izh�fi 1,888 (183) 472 (53)
izh�krl 1,827 (177) 203 (26)

Table 5.1: Sizes of the di�erent language-pair training and test sets, con-
structed using CogNet [9] and Álgu [61].

5.3.2 Datasets

Our experiments include �ve language pairs. Two of these are from the
Indo-European family, namely Spanish�Portuguese (es�pt) and Danish�
Swedish (da�sv). The other three are from the Finnic family, including
Finnish�Estonian (fi�et), Ingrian�North Karelian (izh�krl), and Ingrian�
Finnish (izh�fi). While Ingrian and North Karelian are truly low-resource,
Finnish and Estonian are relatively high-resource languages, but their online
etymological resources are relatively scarce for our purposes. For these �ve
language pairs, pre-trained symbol embeddings are freely available1, and
cognate sets for them were found in CogNet [9] and Álgu [61]. The sizes of
our datasets are shown in Table 5.1.

Pre-Trained Symbol Embeddings

The Xsym embeddings have been trained on the following corpus pairs:
Spanish Europarl�Portuguese Europarl (es�pt), DanishWikipedia�Swedish
Europarl (da�sv), Ingrian Bible�Ylilauta forum (izh�fi), Ingrian Bible�
Olonets Karelian Bible (izh�krl), and Finnish Ylilauta forum�Estonian
Reference Corpus (fi�et). (We use Olonets Karelian embeddings for North
Karelian, as these languages, or dialects, are very closely related and use
the same alphabet. CogNet also did not contain any cognates for Ingrian�
Olonets.) These embeddings are for individual characters only.

Training and Test Sets

To build our training and test sets, we retrieved the Indo-European cog-
nates (es�pt, da�sv) from CogNet, and the Uralic cognates (fi�et, izh�fi,

1At https://mark.granroth-wilding.co.uk/papers/unsup_symbol/

https://mark.granroth-wilding.co.uk/papers/unsup_symbol/
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izh�krl) from both CogNet and Álgu. For each dataset, we generate neg-
ative samples by pairing unrelated words randomly, so that approximately
10% of the word pairs are cognates. In Table 5.1, we report the training
and test set sizes for each language pair.

CogNet, in the same way as the Etymological WordNet [39] used in
our previous experiments, is an automatically built large-scale database of
cognates where cognate pair has a common meaning. In contrast to Etymo-
logical WordNet, CogNet involves several sources of evidence in addition to
Wiktionary: orthographic, semantic, and geographic evidence. In this work
we use the most recent and largest version of CogNet (v2)2. The accuracy
of the database is 95%, meaning that 5% of its `cognates' are in fact not
cognates. However, we opt to use this database in this chapter, as it is
much larger than and overlapping with Etymological Wordnet, allowing us
to sample larger datasets for speci�c language pairs instead of using all lan-
guage pairs as we did with IE-Train in Chapter 4. Our other data source,
Álgu, was described in Section 4.3.1.

5.3.3 Implementation

In this experiment, we use the same S-CNN model as in Section 5.2, al-
though we do not separate the model into an encoder and a classi�er. In
other words, the model is the same as in Chapter 4, but with a bilinear
layer as the merge function, instead of absolute vector di�erence. We keep
the model's architecture the same, except for the height of the convolution
kernel, p, which we adjust to match the input embedding dimension. For
one-hot encodings, this is equal to the total alphabet size of training and
test sets (p = |Σ|), while for Xsym embeddings this is p = 30. As be-
fore, the maximum word length is 20 characters, as almost all words in our
datasets are shorter than this.

In order to use Xsym embeddings together with S-CNN, we encode
each character found in a dataset with a pre-trained embedding, and encode
input words by concatenating their characters' embeddings. In case there
is no embedding for a certain character, we use a random vector with the
same dimension.

When training the models, we varied the batch sizes and number of
epochs according to dataset size. For the larger Indo-European sets (es�pt,
da�sv) we set batch size to 64 and number of epochs to 20, while for the
smaller Uralic sets (fi�et, izh�fi, izh�krl) we used batch size 4 and 30
epochs. We chose these values based on cross-validation on our training

2Available at: http://ukc.disi.unitn.it/index.php/cognet/

http://ukc.disi.unitn.it/index.php/cognet/
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sets. Otherwise, as in Chapter 4, we use binary cross-entropy loss and the
Adadelta [157] optimiser with α = 1.0 and ρ = 0.95, and implemented the
model with the PyTorch library [104].

5.3.4 Evaluation

Similarly to Chapter 4 and Section 5.2, we test our models on transfer across
language families. However, we do this both ways between Indo-European
and Uralic families. We also run some additional tests both within indi-
vidual language pairs as well as across di�erent language pairs within the
same family, in order to test how performance is a�ected by language dis-
tance and the extent of data distribution mismatch. In contrast to previous
cognate identi�cation experiments, we do not use IE-Train as our Indo-
European dataset, since that would require pre-trained symbol embeddings
for all language pairs in the dataset. Instead, our Indo-European set con-
sists of two language pairs (es�pt, da�sv) and our Finnic set of three pairs
(fi�et, izh�fi, izh�krl).

In this experiment, we compare the performance of three models, all
being variants of S-CNN but using di�erent ways of encoding input words.
The �rst model (emb) encodes inputs with pre-trained Xsym embeddings.
The two other models, as previously, use binary one-hot vectors, whose
dimension is equal to the total amount of di�erent characters appearing
in a dataset, and the vector's entries are xi = 1 at one character-speci�c
index and zeros otherwise (xj = 0, j ̸= i). The di�erence between these
two models is that one (one-hot) considers identical characters to be the
same across languages (e.g. the Finnish and Estonian letter a is considered
the same, i.e. afi = aet = a), while the other (one-hot-d) considers every
character to be speci�c to a language (i.e. afi ̸= aet), in the same way as in
Xsym embeddings.

We evaluate these models on three kinds of test setups: (1) within in-
dividual language pairs, (2) across language pairs within one family, and
(3) across language families. For each test setup we compute the F1 score
as well as average precision (AP). We consider these metrics suitable in this
experiment, as classes are imbalanced in the datasets. The F1 score sum-
marises the models' precision and recall for the test sets, while AP indicates
how well they are able to rank word pairs according to cognacy, as explained
in the previous chapter.
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5.3.5 Results

Table 5.2 shows the F1 and AP scores for di�erent S-CNN variants and
test setups. We �nd that in general, one-hot quite clearly outperforms
the other two variants, while emb is superior to one-hot-d.

In the �rst setup, where train and test sets come from the same language
pair, performance is highest for all three variants. Here, in terms of AP, the
above pattern (one-hot > emb > one-hot-d) is present in all language
pairs except in izh�fi, where emb has the lowest value. Even then, its F1

score is higher than that of one-hot-d.
In the second setup, the variants are trained and tested on a di�erent

pair within the same language family. For the Indo-European pairs, the
general level of performance drops signi�cantly for emb and one-hot-d,
while that of one-hot only moderately. Here, emb reaches a substantially
higher F1 and AP scores than one-hot-d for both ways of transfer between
es�pt and da�sv. However, when testing on Finnic pairs, the performance
of emb and one-hot-d falls even further. Now emb is only slightly better
in terms of AP for izh�krl and fi�et. Meanwhile, there is only a small
di�erence for one-hot except when tested on fi�et.

In the third setup, the variants are trained and tested on di�erent
language families. In terms of AP values, the performance of emb and
one-hot-d is similar when tested within the Uralic family, emb reaching
slightly higher scores except for F1 when tested on Indo-European. The
performance of one-hot is now worst in terms of AP.

Altogether, the results in Table 5.2 show the extent to which perfor-
mance drops along with increased distance between source and target lan-
guages. We consider it unsurprising that one-hot-d performs worst across
all setups, as it considers every character language-speci�c, assuming no
cross-lingual character equivalences whatsoever. Regarding the signi�cantly
inferior performance of one-hot-d, especially for cross-lingual tests, we
note that the training sets might be too small for it, as its one-hot vectors
are very high-dimensional, equal to the sum of language-speci�c alphabets.

We note that the superior performance of one-hot probably depends
on the fact that all �ve language pairs have similar Latin alphabets. This
means that assuming symbol equivalence is a good strategy for our test sets,
which is con�rmed by our results. The result that emb mostly outperforms
one-hot-d suggests that in cases where alphabets are more distinct (i.e.
when orthographies are di�erent), it would probably be the best-performing
variant. That is, the more distinct the alphabets, the greater the similarity
between one-hot and one-hot-d, while the performance of emb should
not change signi�cantly.
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emb one-hot one-hot-d

Train�test pair F1 AP F1 AP F1 AP

(1)

es�pt → es�pt 90.1 95.9 91.1 96.2 89.1 94.0
da�sv → da�sv 90.1 95.2 90.7 95.8 87.6 93.3
fi�et → fi�et 47.5 67.9 63.1 79.3 16.7 43.3
izh�fi → izh�fi 53.7 52.8 53.0 67.7 49.2 70.7
izh�krl → izh�krl 65.1 68.0 57.3 80.1 62.5 64.4

(2)
es�pt → da�sv 36.7 30.5 80.0 86.1 0 9.64
da�sv → es�pt 42.4 42.12 81.2 89.0 0 10.6

(2)
fi�et+izh�fi → izh�krl 2.7 11.1 75.7 84.5 14.9 9.4
fi�et+izh�krl → izh�fi 5.9 9.7 77.8 86.9 6.8 11.5
izh�fi+izh�krl → fi�et 8.2 11.7 54.0 60.9 0 8.9

(3)
IE → Uralic 11.2 11.8 67.5 74.7 0 10.0
Uralic → IE 11.5 13.5 65.2 71.2 17.6 9.9

Table 5.2: F1 and average precision scores in di�erent transfer setups for
S-CNN variants using three di�erent input word representations: Xsym
embeddings (emb), one-hot vectors with symbol equivalence assumption
(one-hot), and one-hot vectors, all symbols distinct (one-hot-d). Setups:
(1) Training and testing within the same language pair, (2) training on one
or several language pairs and testing on another from the same family, and
(3) training on all pairs of one family, testing on the other family.

5.4 Conclusion

In this chapter, we have addressed our second research task, RT-II:

RT-II. Given only unlabelled data, adapt a pre-trained cognate

identi�cation model to truly low-resource Uralic languages.

In this low-resource scenario, we have continued with the same task as
in Chapter 4, cognate identi�cation between truly low-resource Uralic lan-
guages. However, instead of having access to small cognate sets to use for
adaptation (e.g. �ne-tuning), we address an even more extreme scenario
where only unlabelled data in moderate amounts is available for our tar-
get languages. Therefore, our transfer learning approach has been to use
unsupervised methods of adaptation.

We have proposed discriminative adversarial networks and pre-trained
cross-lingual symbol embeddings. We have conducted two experiments, in
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both of which we use the same similarity learning model we found to perform
well at cognate identi�cation in Chapter 4, the Siamese convolutional neural
network (S-CNN).

In our �rst experiment, the adaptation was done at the level of merged
word pair representations, the latent features. Initially, we pre-train S-CNN
on Indo-European etymological data, and split the model into a source en-
coder and a classi�er. Then, we initialise a target encoder with the source
encoder's weights, and train it adversarially with a discriminator on un-
labelled word pairs between South, North, and Skolt Sami. Testing the
target encoder combined with the pre-trained classi�er, we observe a no-
ticeable improvement at ranking Sami word pairs according to cognacy.
This result suggests that adversarial adaptation is able to make Sami and
Indo-European representations more similar to each other, resulting in an
easier task for the pre-trained classi�er.

In our other experiment, we compare two kinds of representations to use
as the S-CNN's inputs: pre-trained symbol embeddings and one-hot vec-
tors. We run a set of tests with di�erent combinations of source and target
language pairs, including high-resource Spanish�Portuguese and Danish�
Swedish of the Indo-European family, as well as the Finnic pairs of Finnish-
Estonian, Ingrian�Finnish, and Ingrian�Karelian. Overall, we �nd that
using pre-trained symbol embeddings results in better ranking performance
(AP) in comparison with one-hot vectors when assuming no cross-lingual
symbol equivalence. However, for our test sets, assuming such equivalence
does result in best performance when using one-hot vectors. This is proba-
bly due to highly overlapping alphabets across all �ve language pairs, and
an apparently high correspondence between similar characters. However, it
is likely that for languages with disjoint alphabets, embeddings would result
in best performance.

Although our results are encouraging, further research is needed to in-
vestigate the extent to which our methods generalise across other languages
and families, or larger sets of language pairs within the same families. In
particular, the potential of cross-lingual symbol embeddings should be ex-
amined with languages using di�erent orthographies. Furthermore, our two
methods could be combined: pre-trained embeddings with adversarial net-
works, or adversarial training to adapt embeddings before using them for
classi�cation.

We conclude that we have accomplished RT-II by developing methods
of unsupervised cross-lingual adaptation for cognate identi�cation between
truly low-resource languages, We have considered transfer across language
pairs both within and between the Indo-European and Uralic language fam-
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ilies. We consider our methods scalable to new language settings, as no
linguistic expertise is required. They require relatively small amounts of
unlabelled language-speci�c data, including corpora to pre-train character
embeddings. Altogether, our work in this chapter contributes to our ob-
jective of extending the coverage of low-level NLP to truly low-resource
languages.
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Chapter 6

Neural Document Planning for

News Generation

In this chapter, we examine the task of document planning in data-to-text
natural language generation (NLG) of news. In Section 3.2, we presented
the composition of an NLG pipeline, where document planning consists
of content selection and document structuring, that is, determining what
information is presented in an output and in which order. As stated in
Chapter 1, we address our third research task RT-III:

RT-III. Given only auxiliary data, develop a method for document

planning in news generation.

We investigate especially neural methods, as they provide a promising av-
enue for more domain-independent and robust solutions to document plan-
ning [116] than traditional hand-engineered approaches [137].

However, in our low-resource scenario, we have no annotated training
data for direct supervised training. In fact, a signi�cant obstacle to the
use of end-to-end neural approaches to document planning is the lack of
suitable training data. In our news context, this would be professionally
written news reports aligned with the data records that led to the reports.
The availability of such datasets is in general very limited [57, 137], except
for certain domains [e.g. 114].

Our approach to accomplish RT-III is to investigate the use of distant
supervision: given unlabelled auxiliary data in the form of a news corpus,
we construct a labelled training dataset for the task of sentence ordering,
our source task. Having trained a neural model for this task, we transfer it
to document planning in news generation, our target task. As newsrooms
have extensive archives of reports written by journalists, that is, the pro-
cess outputs, we consider news generation an appropriate application for

71
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distant supervision. Thus, we provide more insight into the applicability
of distant supervision in low-resource NLP, an open research question [55].
Since our method requires only an unlabelled corpus, it is relatively domain-
independent and thus scalable to new scenarios with low-resource domains.
Thereby we contribute to the objective of this thesis, to widen NLG cover-
age over low-resource domains where it is often lacking [57].

We proceed with a description of our problem setting and the proposed
sentence ordering models. Then, we present two experiments: �rst, we
train the models on automatically constructed datasets, and test them on
our source task, sentence ordering, to �nd out which one of them is most
suitable for our target task, document planning. Second, we apply the
chosen model (a Siamese convolutional network) to the document planning
stage of an existing news generation pipeline [84], with a human evaluation
of the outputs.

6.1 Problem

Our objective in this chapter is to apply a neural approach to the doc-
ument planning stage of the news generation pipeline of Leppänen and
Toivonen [84]. As discussed in Section 3.2, document planning consists of
content selection and document structuring, that is, to select and order the
information included in an output. In this chapter, our task is to select and
order messages, roughly corresponding to sentences (see Sections 3.2 and
6.4.1), by computing speci�c importance weights for each message. Our aim
is to do this using deep learning, in a truly low-resource scenario without
any annotated training data for the task. However, unlabelled auxiliary
data exists in the form of a news corpus from a similar domain.

As discussed in Section 3.2.1, the pieces of information in a news article
tend to be arranged according to their importance, re�ecting newsworthi-
ness [138, 148]. Thus, we consider the task of sentence ordering an ap-
propriate auxiliary task for document planning. Although we acknowledge
that importance does not always decrease linearly from one sentence to the
next, we postulate that by learning patterns between sentence position and
content, we can also learn about the relationship between sentence content
and importance, given enough training data.

From the perspective of transfer learning (see Section 2.2), we consider
sentence ordering our source task TS = {YS , PS(YS), PS(YS |XS)}, and docu-
ment planning our target task TT = {YT .PT (YT ), PT (YT |XT )}. These tasks
di�er in their label spaces, as the source task is to predict sentence position
while target task is to predict the message weights. That is, source label
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space is of the form YS = {0, . . . , C−1 }, where C is the maximum number
of sentences in an input paragraph. The target label space is YT = R+, as
the weights are positive. Clearly, YS ̸= YT , from which follows that prior
and conditional label distributions are also di�erent, PS(YS) ̸= PT (YT )
and PS(YS |XS) ̸= PT (YT | XT ). That is, conditions 3�5 described in Sec-
tion 2.2.2 are present.

Our auxiliary data is a news corpus consisting of news reports on various
statistics about the state of Finland, as will be explained in Section 6.4. In
contrast, the dataset underlying our news generation experiment concerns
a more speci�c topic, consumer price indices of various product categories.
Both the corpus and generation are in English, implying that source and
target feature spaces are the same, XS = XT . Also, the data distributions
PS(XS) and PT (XT ) are similar, although generation is concerned with only
a subset of the corpus's topics.

Hence, in this low-resource scenario, we face the condition of disparate
target tasks, addressed by inductive transfer learning (see Section 2.2.3).
However, in contrast to previous work assuming the availability of labelled
data for the target task [123], we only have unlabelled auxiliary data.

Our approach is to use sequential transfer learning with distantly su-

pervised pre-training: we automatically annotate a labelled source dataset
DS , and train a neural model for sentence ordering, TS . We construct DS

separately for each model variant presented in the next section. Although
the generation database consists of numerical data, the generation pipeline
converts numerical data points to messages in sentence format. We consider
this resulting dataset our target dataset DT . In our news generation ex-
periment (Section 6.4), we develop a scheme to weight the messages in DT

using a neural sentence ordering model, thus transferring it to our target
task TT , document planning.

6.2 Neural Networks for Sentence Ordering

In this section, we present three di�erent neural network models we train for
our source task TS , sentence ordering. In our �rst experiment in Section 6.3,
we use these models to order sentences within paragraphs of raw human-
written statistical news articles. Common to these models is that they
are all trained to predict the `correct' position of an input sentence within
a paragraph, that is, the sentence's most appropriate position given its
content.

Each of the following neural network models has a di�erent approach to
the sentence ordering task. The �rst one, a Siamese network, resembling
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the one we applied to cognate identi�cation in Chapters 4�5, is a binary
classi�er of sentence pairs predicting whether one sentence should precede
another. The second one, a positional network, is a multi-class classi�er
predicting the most likely paragraph quantile to which a sentence should
belong. The third one, a pointer network, is a sequence-to-sequence model
predicting the correct ordering of a shu�ed paragraph of sentences. While
the pointer network can be directly applied to sorting a paragraph, the
�rst two models require an additional sorting operation in order to perform
sentence ordering.

We examine these three models, as they represent di�erent lines of re-
cent work where similar models have been proposed (see background in
Section 3.2). Since our end goal is to apply one of these models to docu-
ment planning for news generation (Section 6.4), we are more interested in
how these models compare with each other, than in reaching state-of-the-art
performance for sentence ordering.

6.2.1 Siamese Network

The Siamese neural network is designed to learn the similarity between to
inputs, as discussed in Section 2.1.4. In Chapters 4�5, we predicted the
cognacy of word pairs with such a model. In this chapter, we investigate
whether it can learn which one of two sentences should precede the other.
Given such pairwise comparisons, the model can be used to sort a set of
sentences.

The model takes a sentence pair (si, sj) as input, and outputs a value
ŷ ∈ [0, 1], its prediction of whether si should precede sj in a paragraph.
Figure 6.1 illustrates a sentence pair (s1, s2) being �rst encoded into matri-
ces (Xi,Xj) = ([xi1, . . . ,xin], [xj1, . . . ,xjm]) representing the sentences as
token embedding sequences of lengths n and m. Each sequence is then
transformed into one representation of the whole sentence, using either
a convolutional or a BiLSTM layer, resulting in a pair of representation
vectors (si, sj). This vector pair is then further merged into one vector
m ∈ Rh through a bilinear transformation such that m = siWmsj , where
Wm ∈ Rh×n×n is a weight tensor and si, sj ∈ Rn. Finally, this merged
vector s is fed to a fully-connected layer, whereafter the �nal prediction ŷ
is computed using a sigmoid activation function.

We propose two variants of this Siamese network: convolutional (S-CNN)
and recurrent (S-BiLSTM), each computing the sentence representation vec-
tors (si, sj) di�erently. S-CNN does this with a convolutional layer similarly
to our earlier cognate identi�cation model convolving character vectors, by
applying a set of k kernels to each input of (Xi,Xj). The resulting k feature
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Xi = [xi1, . . . ,xin] Xj = [xj1, . . . ,xjm]

Encoder Encoder

FC layer with dropout

ŷ

sjsi

s = siWsj

Figure 6.1: The Siamese network for sentence ordering. X1 and X2 denote
the inputs of concatenated token embeddings, while s1 and s2 denote the
representations resulting from either a convolutional or recurrent encoder
layer, and s is the product of the bilinear operation between s1 and s2.
Finally, ŷ ∈ [0, 1] is the �nal prediction whether s1 should appear before s2
in a news article.

maps are concatenated into single vectors (si, sj). Meanwhile, S-BiLSTM
uses a bidirectional LSTM network to produce sentence representations
(si, sj) as concatenations of the last hidden states of both directions. While
our two variants of the Siamese network are similar to earlier work [2, 24]
(see background in Section 3.2.3), we propose modi�cations with a bidirec-
tional LSTM and a bilinear merging of sentence representations.

To order a set of sentences with a Siamese network, we score each candi-
date next sentence of the correct ordering O by comparing it with all other
sentences within a paragraph, and taking the sum of the log-probabilities of
all comparisons, similar to Chen et al. [24]. Thus we can sort the set accord-
ing to these sums, which re�ect the model's predictions of each sentence's
correct position in the paragraph.

6.2.2 Positional Network

Our second model is a neural network that works as a sentence position
classi�er, following Bohn et al. [14], illustrated in Figure 6.2. Instead of
sentence pairs (si, sj), it takes only one sentence at a time as input, and
outputs a prediction ŷ ∈ {1, 2, . . . , Q }, where Q is the number of quantiles
into which a paragraph of news text is divided. That is, this model does
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X = [t1 ⊕ p, . . . , tn ⊕ p]

Bi-LSTM

Softmax

s

Figure 6.2: The architecture of the positional neural network.

not predict the exact position of a sentence within a paragraph, but the
most appropriate quantile for it. The number of quantiles has to be pre-
determined, and is �xed for all paragraphs in both training and testing
phases regardless of the actual number of sentences in paragraphs.

As in the Siamese network, an input sentence s is �rst encoded into a
sequence of token embeddings [t1, . . . , tn]. In addition, in this architecture
each token embedding is concatenated with an embedding p representing
the whole paragraph p to which sentence s belongs. This paragraph embed-
ding p is the average of all tokens in the paragraph, p = 1

n

∑n
i=1 ti. Thus,

the input becomes X = [t1 ⊕ p, . . . , tn ⊕ p]. In this way, the network can
relate the given input sentence to its context, wheras the Siamese network
does this by comparing one sentence to another.

Next, the embedding sequence X is taken as input by a bidirectional
LSTM layer, from which the last hidden states of both directions are con-
catenated into representation s of the sentence. As in the Siamese network,
s is then further passed on to a fully-connected layer with dropout, and
�nally a softmax output vector q̂ = [q̂1, . . . , q̂Q] ∈ [0, 1]Q indicates the sen-
tence's predicted quantile ŷ such that ŷ = argmaxi q̂i.

With the positional network, we score each sentence si of some shu�ed
paragraph S by computing the weighted average of the predicted quantile
for each si, following Bohn et al. [14], such that

ȳ(si) =

Q∑
i=1

iq̂i

and then sort S from lowest to highest scoring sentences.
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s1 s2 s3 s4 s5

e1 e2 e3 e4 e5

∅ s3 s2 s5 s1

d0 d1 d2 d3 d4

o1 = 3

o2 = 2

o3 = 5

o4 = 1

o5 = 4

Figure 6.3: A pointer network [145] sorting sentences S = s1, . . . , s5. At
each decoding step t, attention is used to predict the index ot of the next
sentence.

6.2.3 Pointer Network

Our third sentence ordering model is a sequence-to-sequence recurrent neu-
ral network and a variant of the pointer network �rst introducced by Vinyals
et al. [145]. The purpose of this model is to predict the correct ordering
O = (o1, . . . , on) of an unordered set of n sentences S = {s1, . . . , sn}, such
that the correct sentence sequence is S′ = (so1 , . . . , son). The architecture
consists of an encoder and a decoder, which are both LSTM networks. The
architecture is illustrated in Figure 6.3.

The encoder's input is a sentence embedding sequence S = (s1, . . . , sn)
representing the unordered sentence set S, from which the encoder computes
the corresponding hidden states E = [e1, . . . , en], where the last hidden
state en is also a representation of the whole input sequence. Given this
last encoder hidden state en, the decoder computes in n steps its own hidden
states D = [d1, . . . ,dn] and outputs its prediction Ô = (ô1, . . . , ôn) for the
correct ordering of S.

At each decoding step i = 1 . . . n, the decoder predicts the index ôi of the
next sentence sôi in the correct ordering. The decoder's input consists of all
the encoder hidden states E = [e1, . . . , en], the decoder's hidden state di−1

from the previous step, and the previously predicted sentence embedding
sôi−1

. The previous index ôi−1 is also known, and cannot be predicted
again. At the �rst step i = 1, the encoder's last hidden state is used as the
decoder's initial hidden state (d0 = en), and sô0 is a random vector.
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At each step, the decoder uses an attention layer to compute a vector
ui, attention vector ai, and a new hidden state vector di such that

ui = vT tanh(W1E+W2di−1)

ai = softmax(ui)

di =

n∑
j=1

aijej ⊕ si−1

where v,W1,W2 are the model's learnable parameters and ⊕ is a concate-
nation operation. The attention vector ai can be regarded as a probability
distribution over the input sentences, and the index of its maximum ele-
ment gives the next sentence the network `points' to. These indices are the
predicted ordering Ô = (ô1, . . . , ôn). Duplicate predictions are avoided by
setting the probabilities of previously predicted indices to zero. The new
hidden state di is a concatenation of the attention-weighted sum vector of
the encoder's hidden states and the decoder input sôi−1

.

6.3 Sentence Ordering Experiment

In this �rst experiment, we examine four neural models: Siamese BiLSTM
(S-BiLSTM), Siamese CNN (S-CNN), positional network (Pos-Net), and
pointer network (Pointer-Net). We test their performance at sentence
ordering, our source task TS . Our aim with this experiment is to determine
which one of these models we should use for our target task TT , document
planning, in our news generation experiment in Section 6.4. Based on both
performance and its otherwise advantageous architecture, we choose to use
the Siamese neural network (S-CNN) in that experiment. Next, we describe
our datasets, training implementation, evaluation, and results.

6.3.1 Datasets

For training, validation, and testing, we use a news text corpus consisting of
web-crawled statistical news articles produced by Statistics Finland1. This
corpus contains Finnish, Swedish, and English news articles, which report
statistical news on various topics including economy, crime, accidents, and
so on. The experiments presented in this chapter use only the English
subcorpus. From now on, we refer to this corpus as StatFi.

We focus on ordering sentences within paragraphs, since our second ex-
periment is concerned with the planning of paragraphs within news reports.

1https://www.stat.fi/
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Nevertheless, we split StatFi by articles in order to prevent paragraphs
from the same article (with similar content) ending up in both training and
test sets. StatFi contains 4,383 news articles, of which we set aside 876
(20%) for testing, and use the remaining 3,507 for training and validation.
The only pre-processing we do is �ltering out sentences with fewer than
three words, as well as paragraphs with one sentence only. This results in
a total of 21,854 paragraphs (77,054 sentences), of which 4,567 paragraphs
(16,028 sentences) for testing and 17,287 paragraphs (61,026 sentences) for
training.

6.3.2 Implementation

Contructing training data

For each sentence ordering model, we automatically annotate a training
dataset using StatFi in a di�erent manner, aiming to provide a good learn-
ing signal with regard to sentence content and position.

As a pairwise model, S-BiLSTM and S-CNN (Section 6.2.1) are trained
on sentence pairs. We sample the training set for this model by splitting
paragraphs in half and forming sentence pairs (si, sj) where si is from the
�rst and sj from the other half. We label these pairs with y = 1 and
the corresponding inversions (sj , si) with y = 0. (We also tried sampling
sentence pairs from articles' �rst and last paragraphs, as well as between
all sentence pairs within paragraphs, but found our choice give a better
learning signal.)

For the positional neural network (Section 6.2.2), a multi-class classi�er,
we label each sentence si of each paragraph p with a quantile label qi. To
do this, we use the formula

qi = ⌊
i− 1

n
Q

⌋ ∀i = 1, . . . , n

where n is the number of sentences in a paragraph. That is, in case there are
fewer sentences than quantiles, some quantiles will not be assigned to any
sentence, while in the opposite case, several sentences might be assigned to
the same quantile. For the pointer network, we shu�e the sentences of each
paragraph and label the shu�ed sentences with their indices in the correct
ordering, that is, the original paragraph.

Sentence encoder

All of our neural architectures require that each sentence is encoded from
string format into either one sentence embedding or a sequence of token
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embeddings. To do this, we tried out several pre-trained language models,
namely BERT [32] and Elmo [108], as well as pre-trained word embeddings
word2vec [97], GloVe [107], and fasttext [15]. Based on validation results, we
chose to use Sentence-BERT [120] (S-BERT) for our reported experiments.
S-BERT has been speci�cally designed for obtaining sentence embeddings
and context-dependent token embeddings e�ciently. In order to produce
better embeddings, we �ne-tune S-BERT on StatFi.

Hyperparameters

In the Siamese CNN, we use one convolutional layer with ten kernels, kernel
size 1024× 6 (input token embedding dimension is 1024), pooling size 1 ×
2, and the length of the input sentence is limited to 30 tokens. (Shorter sen-
tences are zero-padded, longer ones are truncated.) In the Siamese LSTM,
we use a bidirectional layer where the hidden state vector has dimensional-
ity of 80. Both networks have 64 hidden units in the fully-connected layer
and the dropout parameter we set to 0.5. We choose these values based on
validation results of sentence pair classi�cation.

The positional network uses a bi-directional LSTM to compute a sen-
tence representation, has a hidden state vector of dimension 100 and the
number of quantiles we set to Q = 10. In the pointer network, the number
of attention units is 100, hidden state vector size is 100 in the encoder and
100 + 1024 in the decoder, after concatenation with a sentence embedding.
The dimension of the input embeddings is 1024 in all cases. In the posi-
tional network, the input embedding is concatenated with that of the whole
paragraph, and the dimension is doubled.

Training the models, we use binary cross-entropy loss function for the
Siamese networks, and general cross entropy for both the positional and
pointer networks. For model validation, we use cross validation by splitting
the training set into �ve folds. In order to determine an appropriate number
of training epochs, we use early stopping should the validation loss increase
for two consecutive epochs. We train the �nal models using 10 epochs (20
for the pointer network) and batch size 32, Adadelta optimiser [157] with
learning rate α = 1.0 and parameters ρ = 0.9 and ϵ = 1e− 6.

6.3.3 Evaluation

We test the performance of four models at the task of predicting the orig-
inal ordering of sentences shu�ed within a paragraph. As mentioned in
Section 6.2, only the pointer network predicts an ordering directly, while
the Siamese and positional networks orderings are based on log-probability
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scores and weighted average quantiles, respectively. We compare these mod-
els with random ordering.

We use the following evaluation metrics for the ordering task: Kendall's τ ,
perfect match ratio (PMR), and positional accuracy (PAcc), which are com-
puted as follows:

τ =
1

|D|
∑
p∈D

2S(Op, Ôp)
|p|(|p|−1)

2

∈ [−1, 1]

PMR =
1

|D|
∑
p∈D

I(Op = Ôp)

PAcc =
1

|D|
∑
p∈D

∑
i∈|p|

I(osi = ôsi),

where D is the dataset of paragraphs, p is a paragraph, and S(Op, Ôp) is
the minimum number of adjacent transpositions required to change the
predicted ordering Ôp to the correct ordering Op. I is the indicator function,
equal to one when the condition is met and zero otherwise.

Kendall's τ measures rank correlation, and has been found to correlate
with human judgements at information-ordering tasks [80]. PMR is the
ratio of all correctly predicted orderings to all paragraphs in the test set,
whereas PAcc is the ratio of correctly predicted sentence positions to all
sentences in the test set.

6.3.4 Results

The results of the sentence ordering task are shown in Table 6.1. We observe
that Pointer-Net reaches highest scores for all three metrics, meaning
that its predictions correlate most with the original orderings, and have the
highest ratios of both perfectly matching orderings and correctly positioned
sentences. The S-CNN is second, reaching nearly the same scores. It
is followed by S-BiLSTM and Pos-Net, which have clearly lower scores,
although clearly higher than random ordering in terms of Kendall's τ .

These results indicate that the pointer network's sequence-to-sequence
architecture combined with attention learns to make connections between
sentences' position and content more e�ectively than the other models.
This �nding is in agreement with recent success on sentence ordering us-
ing pointer networks [42, 147], as discussed in Section 3.2.3. In addition,
the good performance of S-CNN aligns with previous work on sentence
classi�cation with convolutional networks [69], and especially on pairwise
modelling [151].
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Model Kendall's τ PMR (%) PAcc (%)

Random 0.006 23.4 30.45
S-CNN 0.414 42.0 44.6
S-BiLSTM 0.189 32.4 36.7
Pos-Net 0.128 28.9 34.6
Pointer-Net 0.438 44.0 45.9

Table 6.1: Results on the sentence ordering task for Siamese networks with
CNN (S-CNN) and BiLSTM (S-BiLSTM) layers, positional network (Pos-
Net), and the pointer network (Pointer-Net).

We speculate that these two models' higher performance at sentence or-
dering depends on their respective attention and convolutional layers. While
they work di�erently, both mechanisms facilitate the recognition of whether
certain features are present in the input, with less regard for their exact po-
sition. That is, the presence of certain words or phrases in a sentence are
more easily learned by a convolutional kernel, and a�ect the sentence em-
beddings pointed to by Pointer-Net. Intuitively we also consider it likely
that the presence of certain words or phrases is a more important predictor
of sentence order and paragraph structure than their position within the
sentence. This would also be in agreement with the �ndings of previous
work [30, 102, 147].

Although Pointer-Net slightly outperforms S-CNN at sentence or-
dering, we consider S-CNN more suitable to our target task TT , document
planning. With fewer parameters, S-CNN is computationally less complex.
This makes it more scalable to other turly low-resource scenarios with even
smaller amounts of auxiliary data, which is in accordance with the objective
of this thesis. Furthermore, its lower complexity makes it more suitable for
use cases of online generation upon a user's query, which is our setup in
Section 6.4.

6.4 News Generation Experiment

In this section, we present our second experiment. Our aim is to evaluate a
neural sentence ordering model, S-CNN, at our target task TT , document
planning for news generation. Next, we describe the generation pipeline,
the context of our expoeriment. Then, we present our method for document
planning using S-CNN, as well as our human evaluation scheme and the
results.
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Figure 6.4: Overview of the NLG pipeline of Leppänen and Toivonen [84].
We modify only the document planning stage, using a neural sentence or-
dering model for this task.

6.4.1 Generation Pipeline

We apply our neural document planning approach to an adaptation of the
tmeplate-based news generation system of Leppänen and Toivonen [84].
Figure 6.4 presents a high-level overview of this system. It is designed for
data-to-text generation of short news reports based on structured statistical
data, inlcuding four major stages: data analysis and ingestion, document
planning, microplanning, and realisation. We provide a brief description of
each stage, and for more details we refer the reader to their paper.
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Field Description Example value

where What location the fact relates to Finland
where_type What the type of the location is country
timestamp The time (or time range) the fact

relates to
2020M05

timestamp_type The type of the timestamp month
value A numeric value 0.01
value_type Interpretation of value cphi:hicp2015:cp-

hi02:rt01
newsworthiness An outlierness estimate 1

Table 6.2: An example of a message stating that in the �fth month of 2020,
in Finland, using the year 2015 as the start of the index, the consumer
price index of alcoholic beverages and tobacco changed by 0.01 points with
respect to the value of the index during the previous month. From the
paper of Leppänen and Toivonen [84].

Data Analysis and Ingestion

The data points underlying the generation are from the consumer price
index database of the European statistics agency EuroStat, downloaded in
September 20202. It contains country-level data about the consumer price
indices of various price categories for EU member countries and the US,
and their monthly change over time starting from January 1996. We use
the database as pre-processed by Leppänen and Toivonen [84], with the
addition of monthly rankings of countries by price category (from greatest-
to-lowest values) and comparisons to average values across the EU.

In data preprocessing, input data points are converted to a set of mes-
sages, data structures with semantic representations of facts treated as
atomic units of information. An example message is illustrated in Ta-
ble 6.2. Each message is associated with an outlierness value based on
statistical outlierness with regard to the distribution of comparable mes-
sages, using the Interquartile Range (IQR) method [83]. These values are
intended to re�ect the messages' newsworthiness. These values are adjusted
according to recency, considering more recent data points more newsworthy.
Furthermore, each message is associated with a high-level topic, in our case
corresponding to a speci�c consumer price index category (e.g. `clothing and
footwear'). In contrast to Leppänen and Toivonen [84], we consider only
such high-level topics, instead of �ne-grained label hierarchies. That is, we

2Available at: https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ei_

cphi_m.

https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ei_cphi_m.
https://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=ei_cphi_m.
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do not assume the availability of the kind of detailed, structural metadata
used in their work.

The generated messages are divided into two sets, the core set and the
expanded set. The core messages pertain to a certain focus country, deter-
mined by user query, while expanded set contains messages corresponding
to rest of the data in the database. For example, given `France' as the user-
selected focus country, the core set contains all messages about France,
while the expanded set includes messages about all other countries. While
the system should generate a text about a queried country, it is also in-
tended to describe data concerning other countries, providing additional
context. In our experiments, the core set tends to include several thou-
sands of messages, while the expanded set is an order of magnitude larger.
Although messages do not have any linguistic structure at this point, they
can be conceptualised as phrases or short sentences.

Document Planning

After data pre-processing and message generation, the core and expanded
sets are processed into a document plan. This describes what information
is to be included in the �nal output (content selection) and how it will
be structured (document structuring). In this work, we apply our neural
sentence ordering model to this document planning stage, recomputing the
initial outlierness values re�ecting messages' newsworthiness.

Given the two sets of messages, the �rst step is to plan the �rst para-
graph of the output. Initially, the most newsworthy message (with highest
outlierness value) in the core set is chosen as the nucleus (see Section 3.2 for
an explanation of terminology) of the �rst paragraph, establishing the para-
graph's theme (consumer price category). Then, the paragraph is completed
with satellite messages from the union of the core and expanded sets. This
set is �ltered to include only messages with the same theme. New satellites
are appended until the the maximum paragraph length has been reached,
or an early-stopping condition is met. The minimum and maximum lengths
are three and six messages, respectively. The early stopping condition is
met if the highest-scoring satellite candidate falls either below a minimum
absolute score threshold, or has a score that is less than 20% of that of the
paragraph's nucleus.

Having completed the �rst paragraph, the second paragraph is initialised
by selecting a new nucleus, the message with highest outlierness value not
discussing the same theme as the previous one beginning the �rst paragraph.
In this experiment, the evaluated outputs contain two paragraphs each, but
the system can be used to generate outputs of arbitrary length.
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Microplanning

Given a document plan, the system proceeds with microplanning, including
template selection, aggregation, lexicalisation, and referring expression gen-
eration. In this stage, messages are associated with linguistic expressions.
In our setup, each message is �rst associated with a short phrase-level tem-
plate. This is followed by combining templates into longer sentences and
replacing parts of the templates with linguistic content.

Realisation

The �nal stage of the pipeline, realisation, consists of morphological and
surface realisation. At this point, the words and phrases constituting a
document are in�ected into their correct morphological forms, and the text
is formatted.

6.4.2 Baselines

In terms of document planning, we compare our neural approach, Neural,
against two baselines: Trivial and Heuristic. All of these three methods
construct paragraphs using fundamentally the same process as described in
the previous section. However, they di�er in terms of the satellite selection
process. In Trivial, the satellites are simply �ltered to match the theme
of the paragraph's nucleus. That is, a next satellite sk is the candidate
message c for which the score

scoreT (c, n) = outlierness(c)× I(theme(c) = theme(n))

where n is the nucleus, is greatest. Content selection and document struc-
turing are then done at the same time, as satellites are selected in the order
of descending score values.

Heuristic is e�ectively the method proposed by Leppänen and Toivo-
nen [84], although without assuming the availability of structural and hi-
erarchical label metadata. We use two weighting schemes, a penalty and a
contextual similarity score, which are multiplied with the outlierness value
of each message. First, we use a penalty to discourage the generation of
long segments of text discussing countries other than the output's focus
country given by the user. This is computed as penalty(c) = 1

d+1 , where d
is the distance from a candidate satellite c to the paragraph's previous core
message. (Core messages always concern the focus country.) That is, d is
the number of steps from c to this core message: for example, d = 0 if c is
itself from the core set, d = 1 if the preceding message is from the core set,
and so on. This penalty is applied to every candidate in the expanded set.
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Second, we compute a contextual similarity score for each candidate
satellite, both with regard to the nucleus (�rst message of the paragraph)
and to the previously selected satellite. The similarity score is then the
mean of these two components. For the �rst satellite, the components have
the same values. Otherwise, a component's value is 1.5 if the two messages
compared have the same timestamp, 2 if they discuss the same country, and
3 if both attributes are the same. If neither is shared, the similarity score
is zero. This results in a score for a candidate c to be the next satellite sk
such that

scoreH (c, n, sk−1) = outlierness(c)× simc(c, n) + simc(c, sk−1)

2
×penalty(c)

where n is the nucleus and simc is the contextual similarity metric. The next
satellite sk is the message with the highest score. Thus, content selection
and document structuring are done at the same time, as in Trivial.

6.4.3 Neural Scoring

In our proposed method, Neural, we extend our baseline Trivial by
weighting satellite candidates' scores (scoreT values de�ned in the previous
section) using our neural sentence ordering model, S-CNN. Our algorithm
to do this is presented in Algorithm 1. As in Trivial and Heuristic, a
paragraph's nucleus is the message in the core set with the highest outlier-
ness value.

To use S-CNN for content selection and document structuring, messages
need to be represented as natural-language sentences. To obtain such string-
formatted representations, we apply a simpli�ed version of our template-
based NLG pipeline to each message in isolation. As we apply it to one
message at a time, we do not need steps such as document planning and
aggregation that are only meaningful in the context of multiple messages,
and thus we ignore them. This also prevents a case where the document
planner would have a recursive dependency on itself.

For example, in our use case of consumer price index data, a message
containing the information for a country (`Austria'), timestamp (`2021M02'),
category (`unprocessed food'), and value for monthly growth rate in compar-
ison with EU average (`5.2%'), the natural language representation would
be `In February 2021, the monthly growth rate of the harmonized consumer
price index for the category �unprocessed food� was 5.2 percentage points
more than the EU average.' This kind of string representations can be re-
garded as sentences similar to the actual human-written sentences appearing
in our training corpus StatFi.
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Algorithm 1 Algorithm for determining weights wN with the S-CNN
model. The symbol ⊕ denotes concatenation.

Input: M = [(m1, scoreT (m1)), . . . , (mn, scoreT (mn))]
Output: M ′ = [(m1, scoreN (m1)), . . . , (mn, scoreN (mn)]

k ← 20 ▷ Length of adjacent list Jm
a, b← [0.02, 50] ▷ Weight range
M ′ = [ ]
for all i ∈ {1, . . . , n} do

# Get adjacent messages

ileft ← max{0, i− ⌊k2⌋} ▷ Left index of Jm,
iright ← min{n, i+ ⌈k2 ▷ Right index of Jm
Jm ←M [ileft : i− 1]⊕M [i+ 1 : iright]
# Compute scoreN
s← 0
for all j ∈ Jm do

p← S-CNN(mi, j)
s← s+ log p

end for

s← s
k−1 ▷ Average s over Jm

s← es

wN ← s(a− b) + a ▷ Compute weight
scoreN (mi) = scoreT (mi)× wN

M ′ ←M ′ ⊕ [(mi, scoreN (mi))]
end for

Since S-CNN is trained to classify whether one sentence si should pre-
cede another sentence sj , we reorder the expanded message set using the
model to make pairwise comparisons between messages, according to Al-
gorithm 1. Given the core set as a list of messages M sorted according to
decreasing outlierness values, we compute a weight wN for each message
m ∈ M in the set by comparing it with k adjacent messages a ∈ Am. We
compute the left and right ends of A dividing messages a on both sides of
m as evenly as possible, while leaving out m itself, that is |Am| = k− 1. In
our experiment, we set k = 20. As we select three to six messages out of
thousands into a paragraph in the �nal output, we consider it su�cient to
make comparisons between nearest adjacent messages, which also decreases
computation time.

Given a message m and its adjacent messages Am, we compute the log-
probability sum of S-CNN's predictions p for all pairs between m and Am,
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and average this value, s, over Am. If S-CNN predicts a high value of s, then
according to the model, m should be placed before the other k− 1 adjacent
messages in Am. We then turn s back to a probability value by taking its
exponential, and compute the weight wN such that wN = s(b−a)+a, where
[a, b] is a pre-determined range for the coe�cient. The larger this range,
the more weight is placed on the neural model's scoring, diminishing the
impact of outlierness value. We found a range of [0.02, 50] to be one that
weights the neural score quite signi�cantly, resulting in outcomes noticeably
di�erent from the baselines (shown later in Figure 6.5). Finally, as a result
of Algorithm 1, new satellite candidates c have values

scoreN (c, n) = scoreT (c, n)× wN (c)

where scoreT (c, n) = outlierness(c) × I(theme(c) = theme(n)), the score
of Trivial, and candidate c with the highest value of scoreN is selected as
the next satellite. Following this scoring procedure, the document planning
then proceeds as in the case of Trivial, described above in Section 6.4.2.

6.4.4 Human Evaluation

In order to evaluate the news outputs generated using a neural content se-
lection approach, we conducted a questionnaire survey, where human judges
were presented with generated texts and a set of statements to be answered
using a seven-step Likert scale. Each text was a short two-paragraph news
report on consumer price statistics with a focus on one speci�c European
country. In total, each judge evaluated 12 reports generated by three dif-
ferent document planner variants, four reports each, on the same set of
four focus countries. We received answers from �ve judges, resulting in 60
answers per statement, and 20 answers per variant. Example outputs of
these three document planner variants (Trivial, Heuristic, Neural) on
Finnish consumer prices are shown in Figure 6.5.

The participating judges were journalists from the Finnish News Agency
STT as well as doctoral students in journalism, all known to the authors
through either a joint research project or through personal connections,
but not directly involved with the research described in this paper and were
thus volunteers. The participants were not compensated for their work. We
assumed our human judges to be quite knowledgeable about two of the four
focus countries (Finland and Estonia), while the other two (Croatia and
Germany) were most likely unfamiliar to them.

The survey was conducted anonymously online, and the judges were �rst
provided with a brief background to the research and were asked to consent



90 6 Neural Document Planning for News Generation

Consumer prices in Finland

In March 2020, in Finland, the

monthly growth rate of the

harmonized consumer price index

for the category 'health' was 2.4

points. In Turkey, the harmonized

consumer price index for the

category 'health' was 70.26 points

more than in US. It was 181.7

points. In February 2020, it was

65.53 points more than in US. In

March 2020, the monthly growth rate

of the harmonized consumer price

index for the category 'health' was

2.8 points. In February 2020, the

harmonized consumer price index for

the category 'health' was 176.79

points.

In March 2020, in Finland, the

monthly growth rate of the

harmonized consumer price index

for the category 'health' was 2.4

points. It was 2.2 percentage

points more than in US. In Turkey,

the harmonized consumer price index

for the category 'health' was 70.26

points more than in US. It was 181.7

points. The monthly growth rate

of the harmonized consumer price

index for the category 'health' was

2.8 points. Finland had the 2nd

highest monthly growth rate of the

harmonized consumer price index for

the category 'health' across the

observed countries.

In March 2020, in Finland, the

monthly growth rate of the

harmonized consumer price index

for the category 'health' was 2.4

points. It was 2.2 percentage

points more than in US. The country

had the 2nd highest monthly growth

rate of the harmonized consumer

price index for the category

'health' across the observed

countries. In February 2020, the

country had the 12th highest monthly

growth rate of the harmonized

consumer price index for the

category 'health' across the

observed countries. It was -0.3

points. It was 0.5 percentage

points less than in US.

In January 2020, in Finland,

the monthly growth rate of the

harmonized consumer price index

for the category 'education' was 1

percentage points less than in US.

In February 2020, in Turkey, it was

0.9 points. It was 0.7 percentage

points more than in US. In Sweden,

it was 0.8 points. It was 0.6

percentage points more than in US.

In January 2020, in Estonia, it was

1.3 percentage points more than in

US.

In January 2020, the monthly growth

rate of the harmonized consumer

price index for the category

'education' was 1 percentage points

less than in US. It was -0.8 points.

It was 0.8 percentage points less

than the EU average. In Estonia, it

was 1.3 percentage points more than

in US. It was 1.5 points. It was

1.5 percentage points more than the

EU average.

In January 2020, the monthly growth

rate of the harmonized consumer

price index for the category

'education' was 1 percentage points

less than in US. It was -0.8 points.

It was 0.8 percentage points less

than the EU average. In February

2020, it was 0 points. It was

0.2 percentage points less than

in US. The country had the 8th

highest monthly growth rate of the

harmonized consumer price index for

the category 'education' across the

observed countries.

Figure 6.5: Example outputs on Finnish consumer prices. Reports gener-
ated by the simple baseline document planner (left), the baseline extended
with heuristic �tness scores (middle), and the baseline extended with neural
scoring (right).

to the use of their answers in research. They were then provided with a de-
scription of the type of reports they would read and other instructions. The
texts were described as news alerts, which a journalist would receive from
an automated system, and which could be a starting point for a news story.
The judges were told that di�erent methods had been used for generation,
but they did not know which texts were generated using which method, nor
how many methods were being compared. They were shown one output at
a time, and asked to indicate their agreement with the following statements:

Q1: The text corresponds to the heading (user-queried focus country),

Q2: The text is coherent, and

Q3: The text contains useful information.

With these statements, we have intended to achieve an understanding of
the newsworthiness of the generated texts. Since newsworthiness is not a
completely unambiguous concept, we chose three qualities that we consider
more straightforward for the judges to relate to: topicality (whether text
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corresponds to the queried country), coherence, and usefulness. For all of
these statements, an answer of 1 indicates complete disagreement while 7
indicates complete agreement on a seven-step Likert scale. We report the
median, mean, and standard deviations of the answers for each statement,
although we acknowledge that computing mean and standard deviation on
a Likert scale is not completely unproblematic as it assumes a unit dis-
tance between each step of agreement. However, we think these values do
give more insight about the performance di�erences between the evaluated
models.

In order to assess the statistical signi�cance of our results, we conduct
�rst a Kruskal�Wallis test on each statement sample (including all planner
variants) to determine whether the samples are signi�cantly di�erent. In the
Kruskal-Wallis test, the null hypothesis is that the answers regarding the
three variants originate from the same distribution, and its rejection implies
there is at least one method whose results are statistically unlikely to result
from the same distribution with others. If this null hypothesis is rejected
(i.e. p-value is below signi�cance level α), we apply Mann�Whitney U tests
for each pair of methods within a statement sample. The null hypothesis of
this test is that the answers regarding the two methods originate from the
same distribution. Thus, a rejection of this null hypothesis implies there is
likewise a statistically signi�cant di�erence in performance between the two
methods. We use the Kruskal-Wallis test before pairwise Mann�Whitney U
tests for additional support to the results of the pairwise tests.

We use an overall signi�cance level of α0 = 0.05 for the Kruskal�Wallis
tests, and a Bonferroni-corrected level α = α0

m = 0.05
3 ≈ 0.017 for the

Mann�Whitney U tests with m = 3 comparisons within each statement
sample. We use Bonferroni correction to reduce the possibility of apparent
signi�cance arising simply from multiple comparisons.

6.4.5 Results

The results of our questionnaire survey are shown in Table 6.3. Altogether,
the results indicate that the outputs generated with our neural document
planning approach are more topical, coherent, and useful than those of our
baselines. he medians and means are higher and standard deviations lower
for Neural in comparison with Heuristic and Trivial for all statements
Q1�Q3. The scores for Heuristic seem also slightly higher than those of
Trivial, although the di�erence is smaller.

The results of the statistical tests are shown in Table 6.4. The Kruskal�
Wallis results indicate that at least one of the methods is signi�cantly dif-
ferent from the others in performance in all statement samples, with a very
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Trivial Heuristic Neural

m µ σ m µ σ m µ σ

Q1 4.5 4 1.97 4.5 4.65 1.27 6 5.8 0.94
Q2 3.5 3.45 1.58 4.5 4.4 1.11 5 5.15 0.94
Q3 4 3.9 1.85 4 4.55 1.28 6 5.3 1.18

Table 6.3: The medians (m), means (µ), and standard deviations (σ) of the
answers to the questionnaire comparing the outputs generated by document
planner variants using the two baselines and our Siamese network with a
CNN layer (S-CNN). For each statement, the answer ranges are 1�7, where
higher values are better.

p-values for statements
Test Variants Q1 Q2 Q3

Kruskal�Wallis All 0.0026 0.0009 0.0168

Mann�Whitney U Trivial � Heuristic 0.1552 0.0185 0.1082
Mann�Whitney U Neural � Trivial 0.0010 0.0003 0.0036

Mann�Whitney U Neural � Heuristic 0.0038 0.0161 0.0307

Table 6.4: p-values for the Kruskal�Wallis test for each question sample
and all document planner variants, and for the Mann�Whitney U test for
each variant pair within each question sample. The signi�cance level of the
Kruskal�Wallis test is 0.05, while the Bonferroni-corrected level for Mann�
Whitney U tests is 0.017. Statistically signi�cant values are in bold.

high level of con�dence for statements Q1 and Q2 (p < 0.01 for Q1 and
p < 0.001 for Q2), and even for Q3, although not quite with the same level
of con�dence (p < 0.05).

The Mann�Whitney U tests for pairs of document planner variants indi-
cate that the di�erence between the baselines is not statistically signi�cant
for any of the three statements (p ≮ 0.017). This result re�ects our ob-
servation about the survey results, where the di�erence between these two
methods was relatively small. Meanwhile, the di�erence between Neural
and Trivial is statistically signi�cant with high con�dence, since p < 0.01
for all statements. The same applies to the di�erence between Neural

and Heuristic, although not with quite as high con�dence, and for Q3
the di�erence is not signi�cant. The above results indicate that Neural is
clearly superior to Trivial and modestly superior to Heuristic.
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Altogether, the above results of the survey and the statistical tests in-
dicate that our neural approach to document planning has clearly supe-
rior performance in relation to trivial baseline, while also modestly outper-
forming the heuristic method based on Leppänen and Toivonen [84]. This
suggests that the S-CNN is able to learn patterns about the relationship
between sentence content and position, and supports our initial assump-
tion that more newsworthy sentences tend to appear earlier than others. In
addition, being data-driven, the method requires fewer assumptions to be
made about the data.

6.5 Conclusion

This chapter has focused on our third research task, RT-III:

RT-III. Given only auxiliary data, develop a method for document

planning in news generation.

We have addressed the task of document planning in a news generation
pipeline, considering a truly low-resource scenario with a complete lack of
annotated training data. Thus, we could not use direct supervision to train
a neural network for the task. Instead, our approach was to use distant
supervision, automatically constructing a training dataset for a di�erent
but related task, sentence ordering, from auxiliary data in the form of a
news corpus. Our work in this chapter provides more insight into the ap-
propriateness of distant supervision in low-resource NLP, an open research
question [55].

We have proposed three kinds of neural models for our source task,
sentence ordering within paragraphs, representing three lines of work in
previous research. First, we considered a Siamese network with either con-
volutional or recurrent layers to learn pairwise precedence patterns. This
model was similar to our cognate identi�cation model in Chapters 4�5. Sec-
ond, we presented a positional network predicting the quantile a sentence
should belong to within a paragraph. Third, we proposed a pointer net-
work, a sequence-to-sequence model using attention to reorder a shu�ed
set of sentences.

Our experiments were two-fold: �rst, we evaluated the above neural
models on sentence ordering, and we chose one of them to apply to the
document planning stage of an existing news generation system [84]. Due
to its good performance and relatively lean architecture, we chose to do
this using a Siamese network with a convolutional layer (S-CNN). Second,
we conducted a human evaluation of news reports generated with di�erent
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document planner variants, comparing our neural approach with a trivial
and a heuristic baseline. Our results showed that the neural document
planner brought about superior performance in terms of human-perceived
output quality. More speci�cally, the results imply that its outputs were
more topical, coherent, and useful than the baselines.

Altogether, our neural approach provides an interesting avenue for fu-
ture research on domain-independent methods using distant supervision for
NLG, which often involves similar low-resource scenarios regardless of lan-
guage [57]. Although our results are encouraging, we acknowledge that it
has a couple of disadvantages in comparison with heuristic methods [e.g.
83, 84]. First, it is computationally heavier, which might be an issue for
online use cases where a user expects fast generation. Second, the method
requires a suitable training corpus, the availability of which varies according
to domain. Our news corpus, StatFi, was of the same genre of text as in
the generation, but including a much wider domain of news topics. This
suggests that our approach could potentially transfer well at least within
the same genre. Otherwise, the method's performance will most likely be
a�ected by the similarity of chosen training data to the generation domain.
Nevertheless, the unlabelled auxiliary data required by our method is rela-
tively easy to gather for new domains.

We conclude that we have accomplished Research Task RT-III by de-
veloping a method for document planning in a truly low-resource scenario,
using a distantly supervised approach given only unlabelled auxiliary data.
Our results provide support for neural transfer learning in the context of
higher-level NLP tasks su�ering from lack of annotated training data. Being
domain-independent, our method is scalable to new domains. Altogether,
our work in this chapter contribute to our objective of extending higher-level
NLP to truly low-resource domains.



Chapter 7

Conclusion

Most of the world's languages do not partake in the recent advancements
of NLP, due to insu�cient data resources for deep learning with neural
networks. In addition, even some domains and tasks face a similar situation,
regardless of language. Indeed, truly low-resource languages might lack even
basic NLP tools, and extremely low-resource domains any annotated data
whatsoever for certain tasks, even within a high-resource language.

The purpose of this thesis has been to support the extension of basic
NLP to a wider range of truly low-resource languages, and the coverage
of higher-level NLP across low-resource domains. We have attempted to
do this by addressing two di�erent tasks. On the one hand, we focused
on cognate identi�cation, since cognate information facilitates cross-lingual
transfer for low-level NLP tasks. On the other hand, we examined the
higher-level task of document planning, fundamental in NLG and more
advanced NLP applications, but still largely dependent on domain-speci�c
heuristics.

We have considered these tasks in three kinds of low-resource scenar-
ios with varying resource conditions. First, we identi�ed cognates between
endangered Sami languages, given only a small amount of labelled data in
these languages. Second, we considered the same task in a scenario where
target-language data is completely unlabelled. Third, we addressed docu-
ment planning for news generation in a domain without annotated training
data. Since direct supervision of neural networks has been unfeasible in
these scenarios, we have proposed several transfer learning approaches.

Next, we present an overview of our contributions with regard to our
three research tasks, followed by discussions of both our results and future
research avenues.
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7.1 Contributions

Our objective in this thesis has been to develop neural-network solutions to
cognate identi�cation and document planning, and to use transfer learning
to adapt them to three di�erent low-resource scenarios. To meet this ob-
jective, we de�ned one research task (RT) for each low-resource scenario in
Chapter 1. In each of Chapters 4�6, we have addressed one RT.

Research Task I:

Given scarce language-speci�c labelled data, identify cognates in truly low-

resource Sami languages.

We addressed this research task (RT-I) in Chapter 4. We focused on the
task of cognate identi�cation between truly low-resource South, North, and
Skolt Sami of the Uralic family. In this low-resource scenario, available
training data consisted of a small cognate set, insu�cient for direct super-
vised learning. Lacking high-resource close relatives, we chose the highly
unrelated Indo-European language family as our source language set.

We proposed two similarity learning models: a support vector machine
(SVM) with string-metric features, and a Siamese convolutional neural net-
work (S-CNN). We pre-trained these using Indo-European cognate sets,
and found that S-CNN generalised better to Sami without any adapta-
tion. We also analysed how e�ectively it would adapt when �ne-tuned with
a Sami cognate set, and found that it achieved noticeable improvements
already with small amounts of �ne-tuning samples. In contrast to most
previous work where source and target languages are close relatives, we
consider a novel setup where they are unrelated. The good performance of
S-CNN implies that it can learn such patterns of cognacy that carry over
from one language family to another.

Research Task II:

Given only unlabelled data, adapt a pre-trained cognate identi�cation model

to truly low-resource Uralic languages.

This research task (RT-II) was the focus of Chapter 5. While continu-
ing with the task of cognate identi�cation, we considered a novel scenario
where our target languages were low-resource to the extent that no labelled
data was available for �ne-tuning. Again, we used Indo-European source
data and Uralic (Sami and Finnic) target data.
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We proposed two unsupervised approaches: domain adaptation with
discriminative adversarial networks, and cross-lingual adaptation using pre-
trained cross-lingual symbol embeddings. These were both based on adapt-
ing the model's representations, although at di�erent levels. Neither had
been used before for cognate identi�cation. We found that an adversarially
adapted model outperformed an unadapted one at identifying Sami cog-
nates. While symbol embeddings did not improve S-CNN's performance at
identifying Finnic cognates, we concluded that they would likely be bene�-
cial in scenarios where languages have disparate orthographies.

Research Task III:

Given only auxiliary data, develop a method for document planning in news

generation.

This research task was addressed in Chapter 6. We examined the task of
content selection and ordering, known as document planning, in the genera-
tion of statistical news reports. In this previously unaddressed low-resource
scenario, although generating in English, we lacked suitably annotated data
for direct supervised training. Therefore, we made use of auxiliary data in
the form of a news corpus.

We proposed a novel method of distant supervision: using our auxil-
iary data, we automatically constructed labelled training data for the task
of sentence ordering, our source task, related to document planning, our
target task. We compared Siamese, positional, and pointer networks at
sentence ordering, and found a variant of the Siamese convolutional net-
work (S-CNN) most suitable for document planning. Based on human
evaluation, we found that using this model improved generated outputs in
comparison with heuristic baselines.

7.2 Discussion

The results of our research tasks imply that neural networks provide promis-
ing solutions to our tasks even in truly low-resource scenarios, when lever-
aged with transfer learning. In particular, we have found that Siamese con-
volutional networks have been e�ective at learning cognacy between words,
as well as relative order between sentences. Lacking training data for direct
supervised learning, we have used �ne-tuning, unsupervised cross-lingual
adaptation, and distant supervision to transfer our neural models to our
low-resource scenarios.
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For both of our tasks, our proposed models and transfer learning ap-
proaches have been language- and domain-independent. Thus, we consider
our methods scalable to new low-resource scenarios with di�erent source
and target languages or domains. We have demonstrated that a language-
independent neural model, in combination with �ne-tuning or unsupervised
adaptation, can identify cognates in truly low-resource languages when pre-
trained on an unrelated language family. Likewise, we developed a similar
domain-independent neural approach to document planning, trained only
on auxiliary data. This indicates that our contributions support the over-
all expansion of NLP to a larger set of languages and domains that are
currently truly low-resource. Since cognate information is useful for cross-
lingual transfer, new methods for cognate identi�cation are in themselves
valuable for low-resource NLP.

Our results have interesting implications for both historical linguistics
and data-to-text NLG. Transferring a cognate identi�cation model from
one language family to another implies that predictors of cognacy, such as
regular sound correspondences, carry over across language families. This
�nding opens up an interesting avenue for studying universal patterns of
sound change, which might be of interest for the �elds of historical linguis-
tics, phonetics, and linguistic typology.

Our results also indicate the overlap between NLP and other areas of
machine learning, as well as within NLP. We have found convolutional net-
works especially useful for our tasks, although they are most prominent in
computer vision. In addition, we found our adversarial adaptation method,
originally designed for image domains, to perform well at cognate iden-
ti�cation. Yet another example of this is the use of distant supervision,
popular in image classi�cation [55], for document planning. We also show
that cross-lingual symbol embeddings are bene�cial for cognate identi�ca-
tion and probably other cross-lingual lower-level tasks, analogously to word
embeddings so crucial for higher-level NLP.

Although our methods are more scalable than heuristics and rule-based
methods requiring language- or domain-expertise, they require certain kinds
of training data in varying amounts. In some truly low-resource scenarios,
even unlabelled data might be too scarce for our methods. However, this
kind of data is relatively easy to gather, as no annotations are needed. In
addition, our methods are computationally more demanding than heuristic
algorithms, which could be an issue especially in the case of document
planning and online generation.

.
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7.3 Future Work

While our �ndings in this thesis have been encouraging for neural transfer
learning in truly low-resource NLP, we acknowledge that they provide only
a small step towards a more general coverage of NLP across languages and
domains.

In the context of cognate identi�cation, we have shown that cross-lingual
transfer is possible from one language family to another. This �nding de-
viates from most previous work in cross-lingual transfer considering only
close relatives, thus opening up an interesting avenue for future work in
low-resource NLP. It would be important to examine how universal our re-
sult is, by varying the degree of relatedness of source and target languages
used for pre-training and testing, considering transfer both within and be-
tween di�erent language families. Moreover, some of our methods could be
used in combination, especially those of unsupervised adaptation.

The setup of transfer learning between language families could possibly
be extended to other tasks as well. The characteristics of NLP tasks suitable
for such distant transfer could be investigated, and the extent of language
relatedness needed by di�erent tasks analysed. We speculate that distant
transfer is more feasible for tasks where language is represented on the level
of symbols or sounds, as in our cognate identi�cation task. Examples of such
applications could be related to phonetics, such as speech recognition [131].

In terms of low-resource domains, we have demonstrated the bene�t of
distant supervision in the context of document planning for news generation.
While we consider this an interesting result, it would be important to con-
tinue this work with additional experiments considering di�erent domains
(e.g. news genres) and more dissimilar auxiliary datasets. Furthermore, the
impact of the amount of auxiliary data should be investigated, to evaluate
the feasibility of the method in lower-resource domains and languages.

Although our methods are language- and domain-independent, they
might not be applicable to all low-resource scenarios as they are. Therefore,
another line of future research would be to investigate combinations of our
methods with rule-based ones relying on language- or domain-expertise. As
indicated by other recent work [149], this is likely the way to go for low-
resource NLP.
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